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AR

dB8

dBA

df

Al

A2

DURE A

EPNL

GLOSSARY

Above ground level
#Aerospace Information Report

A-Weighted sound level, expressed in decibels (See
LA]

Maximum A-weighted sound level, expressed in
decibels (see Lyy)

As nmeasured maximum A-weighted Sound Level
Alreraft altitude above the microphone location
Approach operational mode

Centerline Center

Closest point of approach

Distance

Decibel

A-Weighted sound level expressed in units of
decibels (see Ap)

Degree of freedom

Delta, or change in value

Correction term obtained by correcting SPL values
for atmospheric absorption and flight track
deviations per FAR 36, Amendment 9, Appendix A,
Section A36.11, Paragraph d

Correction term accounting for changes in event
duration with deviations from the reference flight
path

"10 dB=Down™ duration of Ly time history

Effective perceived noise level (symbol is
LEPHN)
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EV
Faa
FAR
FAR-36
GLR
HIGE
HOGE
IAS
ICAD

IRIG-B

K(DUR)

KIAS

K(P)

K{85)

Kts

LFO

Event, test run number

Federal Aviation Administration
Federal Aviation Regulation

Federal Aviation Regulation, Part 3é
Graphic level recorder
Hover-in-ground effect
Hover—-out—gf—-ground effect

Indicated airspeed

International Civil Aviation Organization

Inter—-Range Instrumentation Group B (established

technical time code standard)

The constant used to correct SEL for distance
valocity duration effects in A2

Knots Indicated Air Speed

Propagation constant describing the change in
level with distance

Propagation constant describing the change in
with distance

Knots

A-Weighted sound level, expressed in decibels
Equivalent sound level

Level Flyover operational mode

Advancing blade tip Mach number

Rotational Mach number

Translational Mach number

Sample Size

Hational Weather Service

1ix

and

noise

SEL




OASPLy = Maximum overall sound pressure level in decibels

PISLM = Precision integrating sound level meter

PRLy = Maximum perceived noise level

PNLTy - Maximum tone corrected perceived noise level

POP = Fhoto overhead positioning system

4} = Time history "shape factor"

RH - Belative Humidity in percent

EFM - Revolurions per minute

SAE = Society of Automotive Engineers

SEL - Sound exposure level expressed in decibels., The

integration of the AL time history, normalized to
one second (symbol is Lup)

SELapm - As measured sound exposure level

SEL-ALy - Duration correction factor

SHP - Shaft horse power

SLR - Single lens reflex (35 mm camera)

SPL = Sound pressure level

T = Ten dB down duration time

TC = Tone correction calcualted at PNLTy

T/0 - Takeoff

TSC - Department of Transportation, Transportation Systems
Center

v - Velocity

VAST = Visual Approach Slope Indicator

Vi = Maximum speed in level flight with maximum
continuous power

VNE - Never-exceed spead

Vy - Velocity for best rate of climb




1.0 Introduction - This report documents the results of a Federal
Aviation Administration (FAA) noise measurement/flight test program
involving the Aerospatiale Twinstar helicopter. The report contains
documentary sections describing the acoustical characteristics of the
subject helicopter and provides analyses and discussions addressing topics

ranging from acoustical propagation to environmental impact of helicopter

noise,

This report is the Ffourth in a series of seven documenting the FAA
helicopter noise measurement program conducted at Dulles International

Adrport during the summer of 1983,

The Twinstar test program was conducted by the FAA in cooperation with
Aerospatiale Helicopter Corporation and a number of supporting Federal
agencies. The rigorously controlled tests invelved the acquisition of

detailed acoustical, position and meteorological data,

This test program was designed to address a series of objectives
including: 1) acquisition of acoustical data for use in heliport
environmental impact analyses, 2) documentation of directivity
characteristics for static operation of helicopters, (3) establishment of
ground—to-ground and air-to—ground acoustical propagation relationships
for helicopters, 4) determination of noise event duration influences on
energy dose acoustical metrics, 5) examination of the differences between
noise measured by a surface mounted microphone and a microphone mounted at
a height of four feet (1.2 meters), and 6) documentation of noise levels
acquired using international helicopter noise certification test

procedures.




The helicopter is a complex acoustiecal source generating noise from many
different origins. Figure 1.l provides a diagram identifying some of
these sources. Two other noise generating mechanisms associated with
forward flight effects (both associated with flight effects and both
producing impulsive noise) are blade vortex interaction (see Figure 9.14)
and high advancing tip Mach Numbers. These figures are provided for the

reader's reference.

The appendices to this document provide a reference set of acoustical data
for the TwinStar helicopter operating in a variety of typical flight
regimes. The first seven chapters contain the introduction and
description of the helicopter, test procedures and test equipment.

Chapter 8 describes analyses of flight trajectories and meteorological
data and is documentary in nature. Chapter 9 delves into the areas of
acoustical propagation, helicopter directivity for static operations, and
variability in measured acoustical data over various propagation surfaces.
The analyses of Chapter 9 in some cases succeed in establishing
relationships characterizing the acoustic nature of the subject
helicopter, while in other instances the results are tec variant and
anomalous to draw any firm conclusions. In any event, all of the analyses
provide useful insight to pecple working in the field of heliceopter
environmental acoustics, either in providing a tool or by identifying

areas which need the illuminartion of further research efforts.
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TEST HELICOPTER DESCRIPTION

2.0 Test Helicopter Description — The AS 355F TwinStar is a twin-engined,

light, general purpose helicopter. The aircraft is marketed and supported
by Aerospatiale Helicopter Corporation of Grand Prairie, Texas and was
certificated by the FAA in November of 198l. Intended primarily for
commercial companies working in the oil industry, the AS 355F provides
cabin outfitting for a pilot, co-pilot and four passengers. There are

also three baggage holds with external doors.

Selected operational characteristics, obtained from the helicopter

manufacturer, are presented in Table 2.1.

Table 2.2 presents a summary of the flight operational reference
parameters determined using the procedures specified in the International
Civil Aviation Organization (ICAO) noise certification resting
requirements. Presented alonmg with the operational parameters are the
altitudes that one would expect the helicopter to attain (referred te the
1CAD reference test sites), This information is provided so that the
reader may implement an ICAO type data correction using the "As Measured"
data contained in this report. This report does not undertake such a

correction, leaving it as the topic of a subsequent report.




TABLE 2.1

HELICOPTER CHARACTERISTICS

HELICOPTER MANUFACTURER
HELTCOPTER MODEL

HELTCOFTER TYPE

TEST HELICOPTER N-NUMEER
MAXIMUM GROSS TAKEOFF WEIGHT
NUMBER AND TYPE OF ENGINE(S)
SHAFT HORSE POWER (PER ENGINE)
MAXIMUM CONTINUQOUS POWER

SPECIFIC FUEL CONSUMPTION AT
MAXIMUM POWER {LB/HR/HP)

NEVER EXCEED SPEED (V)

MAX SPEED IN LEVEL FLIGHT
WITH MAX CONTINUOUS FPOWER iUH]

SPEED FOR BEST RATE QF CLIME {(Vy)

BEST RATE OF CLIMB

fAerospatiale

AS 355F Twinstar

Single Rotor

5780 D

5070 1lbs

2 Allison 250C20F

420 HF

3271 HE

.701 1b/hr/hp

173 mph (150 kts)

145 mph (126 kts)

63 mph (55 kts)

1870 fpm

MAIN AND TAIL ROTOR SPECIFICATIONS

ROTOR SPEED  (1gg%)
DIAMETER

CHORD

NUMBER OF BLADES
PERIPHERAL VELOCITY

DISK LOADING

FUNDAMENTAL BLADE PASSAGE
FREQUENCY

ROTATIONAL TIP MACH NUMBER (77°F)

MAIN Tall
394 REM __PORB RPM
420,81 73,;2"
13.8" 7.28"
! 3 2
T23.5 ips 567 fps
5.25 1b/Ft? &
20 Hz 70 Hz
L5371 5874




TABLE 2.2

1CAD REFERENCE PARAMETERS

TAKECFF APPROACH LEVEL FLYOVER

ATIRSPEED [KTS) : 5§ 55 1134
RATE OF CLIME/DESCENT (fpm) : 1870 583 MA
CLIMB/DESCENT ANGLE (DEGREES) t 19.8 6.0 Hil
ALTITUDE/CPA (FEET)

SITE 5 T 4TEALLY 3427340 492

SITE 1 i 650/612 394/352 402

SITE 4 : B25/778 445 /443 492
SLANT RANGE (FEET) TO

SIIE 2 HaL - 630 696

SITE 3 : 815 630 696

HOTE

4 preliminary compariscon of noise levels (for the ICAQ noise certification
flight regimes) has been made by engineers from Aerospatiale Helicopters
using results from previous tests in France and data presented in this
report. The fAerospatiale engineers cite generally good agreement, showing
the uncorrected data in this report as 1.2 EPNdB higher than French
results for level flyover, l.l1 EPNdAB 1 ower for approach, and 0.3 EPRdB 1
ower for takeoff operations., In the process of imlementing the full ICAO
correction procedure, (im a subsequent report) a more thorough comparison
will be made.

At the present time, a Helicopter Nolse Measurement Repeatahility Program
is being enducted by The Internatiomal Civil Aviation Organization (ICAQ).
This program involves eight to ten different national measurement teams
conducting noise tests on the same helicopter model, a Bell 206-L3. In
the process of analyzing results of that program, a compendium of other
comparative helicopter noise measurements will also be developed. 1In that
context, the results reported in this document wil be compared in decail
with other detailed results.







TEST SYNOPSIS

3.0 Test Synopsis - Below is a listing of pertinent details pertaining to

the execution of the helicopter tests.

1. Test Sponsor, Program Management, and Data Analysis: Federal
Aviation Administration, Office of Environment and Energy, Noise Abatement
Division, Noise Technology Branch (AEE-120).

2. Test Helicopter: AS 355F TwinStar, provided by Aerospatiale
Helicopter Corporation

3. Test Date: Tuesday, June 7, 1983

4, Test Location: Dulles International Airport, Runway 30 over-run
area,

5. MNoise Data Measurement (recording), processing and analysis:
Department of Transportation (DOT), Tramsportation Systems Center (TSC),
Noise Measurement and Assessment Facility.

6. Noise Data Measurement (direct-read), processing and analysis:
FAA, Noise Technology Branch (AEE-120),

7. Cockpit instrument photo documentation; photo-altitude
determination system; documentary photographs: Department of
Transportation, Photographic Services Laboratory.

8. Meteorological Data (fifteen minute observations): National
Weather Service 0ffice, Dulles International Airport.

9, Meteorological Data (radiosonde/rawinsonde weather balloon

launches): WNational Weather Service Upper Air Station, Sterling Park,

Virginia,




FIGURE 3.1
Flight Test and Noise Measurement Personnel
In Action




10, Meteorclogical Data (on site observations): DOT-TSC.

11. Flight Path Guldance (portable visual approach slope indicator
(VAST) and theodolite/verbal course corrections): FAA Technical Center,
ACT-310,

12. Air Traffic Control: Dulles International Airport Afr Traffic
Control Tower,

13. Test site preparation; surveying, clearing underbrush, connecting
electrical power, providing markers, painting signs, and other physical
arrangements: Dulles International Airport Grounds and Maintenance, and

Alrways Facilities personnel.

Figure 3.1 is a photo collage of flight test and measurement personnel

performing their tasks.

3.1 HMeasurement Facility - The noise measurement testing area was located

ad jacent to the approach end of Runway 12 at Dulles International Airport.
{The approach end of Runway 12 is synonymous with Runway 30 over—run
area.) The low amblent noise level, the availability of emergency
equipment; and the security of the area all made this location desirable.
Figure 3.2 provides a photograph of the Dulles terminal and of the test

area.

The test area adjacent to the runway was nominally flat with a ground
caver of short, clipped grass, approximately 1800 feet by 2200 feet, and
hordered on north, south, and west by woods. There was minimum
interference from the commercial and general aviation activity at the
airport since Runway 12/30 was closed to normal traffie during the tests.
The runways used for normal traffie,; lL and 1R, were approximately 2 and 3

miles east, respectlvely, of the test site.
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Figure 3.2

The Terminal and Air Traffic Control Tower
at Dulles International Airport

Approach to Runway 12 at Dulles Noise
Measurement Site for 1983 Helicopter Tests
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The flight track centerline was located parallel to Runway 12/30 centered
between the runway and the taxiway. The helicopter hover point for the
static operations was located on the southwest corner of the approach end
of Runway 12. Eight noise measurement sites were established in the

grassy area adjacent to the Runway 12 approach ground track.

3.2 Microphone Locations — There were eight separate microphone sites

located within the testing area, making up two measurement arrays. One
array was used for the flight operations, the other for the static
operations. A schematic of the test area is shown in Figure 3.3.

A. Flight Operations — The microphone array for flight operations

consisted of two sideline sites, numbered 2 and 3 in Figure 3.3, and three
centerline sites, numbered 5, 1, and 4, located directly below the flight
path of the helicopter. Since site number 3, the north sideline site, was
located in a lightly wooded area, it was offset 46 feet to the west to
provide sufficient clearance from surrounding trees and bushes.

B. Static Operations — The microphone array for static operations

consisted of sites VH, 5H, 1H, 2, and 4H., These sites were situated
around the helicopter hover point which was located on the southwest
corner of the approach end of Runway 12. These site locations allowed for

both hard and soft ground-to-ground propagation paths,

3.3 Flight Path Markers and Guidance System Locations — Visual cues in

the form of squares of plywood painted bright vellow with a black "¥X" in
the center were provided to define the takeoff rotation point. This point

was located 1640 feet (500 m) from centerline center (CLC) microphone
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location. Four portable, battery-powered spotlights were deployed at
various locations to assist pilots in maintaining the array centerline,
To provide visual guidance during the approach portion of the test, a
standard viswal approach slope indicator (VASI) system was used. In
addition to the visual guidance, the VASI crew also provided verbal
guidance with the aid of a theodolite. Both methods assisted the
helicopter pilot in adhering to the microphone array centerline and in
maintaining the proper approach path., The locations of the VASI from CLC

ara ghown in the following table.

Approach Angle Distance from CLC
(degrees) (feer)
12 1830
9 24356
b 3701
3 7423

Each of these locations provided a glidepath which crossed over the
centerline center microphone locationm at an alcitude of 394 feet.
This test program included approach operations utilizing § and 9 degree

glide slopes.
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FIGURE 3.3
Noise Measurement and Photo Site Schematic
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TEST PLANNING AND BACKGROUND

4.0 Test Planning/Background Activities — This section provides a brief

discussion of important administrative and test planning activities.

4.1 Test Program Advance Briefings and Coordinatiom — A pre-test briefing

was conducted approximately one month prior to the test, The meeting was
attended by all pilots participating in the test, along with FAA program
managers, manufacturer test coordinators, and other key test participants
from the Dulles Airport community. During this meeting, the alrspace
safety and communications protocol were rigorously defined and at the sane
time test participants were able to iron out logilstical and procedural
details, On the morning of the test, a final brief meeting was convened
on the flight line to review safety rules and coordinate last-minute

changes in the test schedule.

4,2 Communications Network - During the helicopter nolse measurement

test, an elaborate communications network was utilized to manage the
various systems and crews. This network was headed by a central group
which coordinated the testing using three two—way radio systems,

designated as Radios 1-3,

Radio 1 was a walkie talkie system operating on 169.275 MHz, providing
communications between the VASI, National Weather Service, FAA Acoustic
Measurement crew, the TSC acoustic team coordinator, and the noise test

coordinating team.

Radio 2 was a second walkie talkie system operating om 170.40 MHz,
providing communications between the TSC acoustic team coordinator and the

TSC acoustic measurement Ceams.
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Radio 3, a multi-channel transceiver, was used as both an air-to-ground
and ground-to-ground communications system. In air-to-ground mode it
provided communications between VASI, helicopter flight crews, and noise
test centrol om 123,175 MHz. In ground—to—ground mode it provided
communications between the air traffic control tower (121.9 MHz), Page

Aviet (the fuel source; 122.95 MHz), and noise test control,
A schematic of this network is shown in Figure 4.1,

4.3 Local Media Notification — Noise test program managers working

through the FAA Office of Public Affairs released an article to the local
media explaining that helicopter noise tests were to be conducted at
Dulles Airport on June 7, the test day commencing around dawn and
extending through midday. The article described general test objectives,
flight paths, and rationale behind the very early morning start time (low
wind requirements). In the case of a farm located very close to the
airport, a member of the program management team personally visited the
residents and explained what was going to be involved in the test, As a
consequence of these efforts (it is assumed), there were very few

complaints about the test program.

4,4 Ambient Noise - One of the reasons that the Dulles Runway 30 over—run

area was selected as the rest site was the low ambient noise level in the
area, Typically one observed an A-Weighted LEQ on the order of 45 dB,
with dominant transient noise sources primarily from the avian and insect
families, The pfimary offender was the Collinus Virginianus, commonly

known as the bobwhite, guail, or partridge. The infregquent intrusive




sound pressure levels were on the order of 55 dB centerad in the 2000 Hz
one-third octave band. A drawing of the noisy offender and a narrow band

analysis of the song may be found in Figure 4.2.

As an additional measure for safety and for lessening ambient noise, a
Notice to Airmen or NOTAM was issued advising aircraft of the noise test,

and indicating that Runway 12/30 was closed for the duration of the test.

FIGURE 4.2

1.5 Sec. Avg.
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DATA ACQUISITION AND GUIDANCE SYSTEMS

5.0 Data Acquisition and Guidance Systems — This section provides a

detailed description of the test program data acquisition systems, with
speclal attention given to documenting the operational accuracy of each
system. In addition, discussion is provided (as needed) of field
experiences which might be of help to others engaped in controlled
helicopter noise measurements. In each case, the location of a given

measurement system is described relative to the helicopter flight path.

5.1 Approach Guidance System — Approach guidance was provided to the

pilot by means of a wvisual approach slope indicator (VASI) and through
verbal commands from an cbserver using a ballon-tracking theodolite. (A
picture of the theodolite is included in Figure 3.1, in Section 3.0.) The
VASI and theodolite were positioned at the point where the approach path

intercepted the ground.

The VASI system used in the test was a 3-light arrangement giving vertical
displacement information within +0.5 degrees of the reference approach
slope. The pilot observed a green light if the helicopter was within 0.5
degrees of the approach slope, red if below the approach slope, whire if
above. The VASI was adjusted and repositioned to provide a variety of

approach angles. A picture of the VASI is included in Figure 3.1.

The theodolite system, used in conjunction with the VASI, also provided
aceurate approach guidance to the pilot. A brief time lag existed between
the instant the theodolite observor perceived deviation, transmitted a
command, and the pilot made the correction; however, the thecdolite crew
was generally able to alert the pllot of approach path deviations (slope
and lateral displacement) before the helicopter exceeded the limits of the

one degree greend light of the VASI. Thus, the helicopter only
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occasionally and temporarily deviated more than 0.5 degrees from the

reference approach path,

Approach paths of 6 and 9 degrees were used during the test program.
Table 5.1 summarizes the VASI beam width at each measurement location For

a variety of the approach angles used in this test,

TABLE 5.1

REFERENCE HELICOPTER ALTITUDES FOR AFPROACH TESTS
{all distances expressed in feet)

MICROPHONE MICROPHONE MICROFPHONE
NO. 4 NO. 1 NO. 5
APPROACH A = BO10 A = 7518 A = TO26
ANGLE = 3° B = 420 B = 394 B = 368
C = 470 C = :ﬁﬁ C = +62
67 & = 4241 A = 3749 A = 3257
u@ = 44& B = 394 B = 342
C= +37 C= 33 C= +29
ge & = 2980 A = 24B8 A = 7362
B-= 472 B = 3094 B = 36
C= 27 Ci= +22 L= +18

&4 = distance from VASI to microphone location
B = reference helicopter altitude

C = boundary of the 1 degree VASI glide slope
"beam width".

5.2 Photo Altitude Determination Systems — The helicopter altitude over a

given microphone was determined by the photographic technique described in
the Society of Automotive Engineers report AIR-902 (ref. 1). This

technique involves photographing an aircraft during a flyover event and
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proportionally scaling the resulting image with the known dimensions of
the aircraft. The camera is initially calibrated by photographing a test
object of known size and distance. Measuring the resulting image enables
calculation of the effective focal length from the proportional
relationship:

(image length)/(object length) = (effective focal length)/(object
distance)

This relationship is used to calculate the slant distance from microphone
to aircraft. Effective focal length is determined during camera
calibration, object length is determined from the physical dimensions of
the aircraft (typically the rotor diameter or fuselage) and the image size
is measured on the photograph. These measurements lead to the calculation
of object distance, or the slant distance from camera or microphone to
aircraft. The concept applies similarly to measuring an image on a print,

or measuring a projected image from a slide,

The SAE AIR-902 technique was implemented during the 1983 helicopter rests
with three 35mm single lens reflex (SLR) cameras using slide film. A
camera was positioned 100 feet from each of the centerline microphone
locations. Lenses with different focal lengths, each individually
calibrated, were used in photographing helicopters at differing altitudes
in order to more fully "fill the frame" and reduce image measurement

Eerror.

The photoscaling technique assumes the aircraft is photographed directly
overhead, Although SAE AIR-902 does present equations to account for
deviations caused by photographing too scon or late, or by the aircraft

deviating from the centerline, these corrections are not required when
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Figure 5.7
Photo Overhead Pasitioning System
{Pop System)

10"

?’i

J. SR *L" N : -1' o F’ =
\lemnd\§m¢Si? Py Ay Photegrapher uszing the

*35-: R ;- '_ g% POP system to photograph
! : the helicepter.

Artist's Drawing of the Photo Overhead Positioning
System (Figure is not to scals.)

Photographs of the AS 355F TwinStar, as taken by the
photographer using the POP system.
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deviations are small. Typically, most of the deviations were acoustically
insignificant. Consequently, corrections were not required for any of the

1983 test photos.

The photographer was aided in estimating when the helicopter was directly
overhead by means of a photo-overhead positioning system (POPS) as
illustrated in the figure and pictures in Figure 5.1 The POP system
consisted of two parallel (to the ground) wires in a vertical plane
orthegonal to the flight path. The photographer, lying beneath the POP
system, initially positioned the camera to coincide with the vertical
plane of the two guide wires. The photographer tracked the approaching
helicopter in the viewfinder and tripped the shutter when the helicopter
crossed the superimposed wires. This process of tracking the helicopter
also minimized image blurring and the consequent elongation of the image

of the fuselage.

4 scale graduated in 1/32-inch increments was used to measure the
projected image. This scaling resclution translated te an error in
altitude of less than one percent. A potential error lies in the scaler's
interpretation of the edge of the image. In an effort to quantify this
error, a test group of ten individuals measured a selection of the
fuzziest photographs from the helciopter tests. The resulting statistics
revealed that 2/3 of the participants were within two percent of the mean
altitude. SAE ATR-902 indicates that the overall photoscaling technique,
under even the most extreme conditlons, rarely produces error exceeding

12 percent, which is equivalent to a maximum of 1 dB error in corrected
sound level data. Actual accuracy varies from photo to photo; however, by
using skilled photographers and exercising reasonable care in the
measurements, the accuracy is good enough to ignore the resulting small

error in altitude.
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Tests were recently conducted in West Germany which compared this camera
method with the more elaborate Kinotheodolite tracking method to discover
which was best for determining overflight height and overground speed,
Both methods were found to be reasonably accurate; thus, the simpler

camera method remains appropriate for most test purposes (ref. 2).

5.3 Cockpit Photo Data - During each flight operation of the test

program, cockpit instrument panel photographs were taken with a 35mm SLE
camera, with an 85mm lens, and high speed slide film. These pilctures
served as verification of the helicopter's speed, altitude, and torque at

a particular point during a test event. The photos were intended to be

taken when the aircraft was directly over the centerline-center microphone
site #1 (see Figure 3.3). Although the photos were not always taken at
precisely that point, the pictures do represent a typical moment during
the test event, When slides were projected onto a screem, it was possible
to read and record the instrument readings with reasonable accuracy.The
word typical is important because the snapshot freezes instrument readings
at one moment in time, while actually the readings are constantly changing
by a small amount because of instrument fluctuation and pilot input.

Thus, fluctuations above or below reference conditions are to be
anticipated. A reproduction of a typieal cockpit photo is shown in Figure
5.2. This data acqulsition system was augmented by the presence of an
experienced cockpit obersver who provided additional documentation of

operational parameters.

For future tests, the use of a video tape system is being considered to
acquire a continuous record of cockpit parameters during each data run.
Preliminary FAA studies (April 1984) dindicate that this technique can be

successful using off the shelf equipment.
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FIGURE 5.2

5.4 Upper Air Meterorlogical Data Acquisition/NWS: Sterling, VA — The

National Weather Service (NWS) at Sterling, Virginia provided upper air
meteorological data obtained from balloon-borne radiosondes. These data
consisted of pressure, temperature, relative humidity, wind direction, and
speed at 100' intervals from ground level through the highest test
altitude, The balloons were launched approximately 2 miles north of the
measurement array. To slow the ascent rate of the balloon, an inverted
parachute was attached to the end of the flight train. The VIZ Accu-Lok
(manufacturer) radiosonde employed in these tests consisted of sensors
which sampled the ambient temperature, relative humidity, and pressure of
the air. Each radiosonde was individually calibrated by the manufacturer.
The sensors were coupled to a radio transmitter which emitted an RF signal
of 1680 MHz sequentially pulse-modulated aC rates corresponding to the

values of sampled meteorological parameters. These signals were received
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by the ground-based tracking system and converted into a continuous trace
on a strip chart recorder. The levels were then extracted manually and
entered into a minicomputer where calculations were performed. Wind speed
and direction were determined from changes in position and direction of
the "flight train” as detected by the radiosonde tracking system. Figure

5.3 shows technicians preparing to launch a radiosonde.

= FIGURE 5.3

e o | =24

e Sy

The manufacturer's specifications for accuracy are:

Pressure = +4 mb up to 250 mb

Temperature = +0.5°C, over a range of +30°C to —30°C

Humidity = +5% over a range of +25°C to 5°C
The National Weather Service has determined the “"operational accuracy” of
4 radiosonde (as documented in an unpublished report entitled "Standard
for Weather Bureau Field Programs", 1-1-67) to be as follows:

Presaure = +2 mb, over a range of 1050 mb to 5 mb

Temperature = +1°C, over a range of +50°C to -70°C

Humidity = +5% over a range of +40°C te -40°C
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The temperature and pressure data are considered accurate encugh for
general documentary purposes. The relative humidity data are the least
reliable. The radiosonde reports lower than actual huomidities when the
air is near saturation. These inaccuracies are attributable to the slow

response time of the humidity sensor to sudden changes. (Ref. 3).

For future research program testing, the use of a S0DAR (acoustical
sounding) system is being consldered. The S0DAR is a measurement system
capable of defining the micro-wind structure, making the influences of
wind speed, direction and gradient easier to identify and to assess in

real time (Ref, 4).

5.5 Surface Meteorological Data Acquisition/NWS: Dulles Airport — The

Mational Weather Service Station at Dulles provided temperature,

windspeed, and wind direction on the test day. Readings were noted

every 15 minutes. These data are presented in Appendix H. The
temperature transducers were located approximately 2.5 miles east of the
test site at a height of 6 feer (1.8 m) above the ground, the wind
instruments were at a height of 30 feet (10 m) above ground level. The
dry bulb thermometer and dew point transducer were contained in the
Bristol (manufacturer) HO-61 system operating with + one degree accuracy.
The windspeed and direction were measured with the Electric Speed
Indicator (manufacturer) F420C System, operating with an accuracy of 1

knot and_fﬁ“.

On-site meterological data were also obtained by TSC personmel using a
Climatronics {manufacturer) model EWS weather system. The anemometer and
temperature sensor were located 10 feet above ground level at noise

site &, These data are presented in Appendix I, The following table

I
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(Table 5.2) identifies the dccuracy of the individual components of the

EWS system.

Sensor

Windspeed

Wind
Direccion

Relative
Humidity

Temperature

ﬂccuracx

+.025 mph
or 1.5%

+1.5%
+27
0-100% RH

+1.0°F

TABLE 5.2
Range Time Constant
0-100 mph 3 sec
0-360° Mach 15 sec

0-540° Elect

(—-100% RH 10 sec

=40 to +120°F 10 sec

After "detection" (sensimg), the meteorological data are recorded on a

Rustrak (manufacturer) paperchart recorder. The following table (Table

5.3) identifies the range and resolutions associated with the recording of

each parameter.

Sensor

Windspeed

Wind
Direction

Relative
Humidity

Temperature

TABLE 5.3
Range Chart Resolution
0-25 T5C mod +0.5 mph
0-50 mph
0-540° +5°
0-100% RH +2% RH
-40° to 120°F +1°F




5.6.0 MNoise Data Acquisition Svytems/System Deployment — This section

provides a detailed description of the acoustical measurement systems
employed in the test program along with the deployment plan utilized in
each phase of testing.

5.6.1 Description of TSC Magnetic Recording Systems — TSC personnel

deployed Nagra two—channel direct-mode tape recorders. HNoise data were
recorded with essentially flat frequency response on one channel. The
same input data were weighted and amplified using a high frequency
pre—emphasis filter and were recorded on the second channel. The
pre—emphasis network rolled off those frequencies below 10,000 Hz at 20 dB
per decade. The use of pre—emphasis was necessary in order to boost the
high frequency portion of the acoustical signal (such as a helicopter
specttum) characterized by large level differences (30 to 60 dB) between
the high and low frequencies. Recording gains were ad justed so that the
best possible signal-to-noise ratio would be achieved while allowing
enough "head room" to comply with applicable distortion avoidance

requirements.

1RIG-B time code synchronized with the tracking time base was recorded on
the cue channel of each system. The typical measurement system consisted
of a General Radio 1/2 inch electret microphone oriented for grazing
incidence driving a General Radio P-42 preamp and mounted at a height of
four feet (1.2 meters). A 100-foot (30.5 meters) cable was used between
the tripod and the instrumentation vehicle located at the perimeter of the
test circle. A schematic of the acoustical instrumentation is shown in

Figure 5.4.

31




Figure 5.4 also shows the cutaway windscreen mounting for the ground
microphone. This configuration places the lower edge of the microphone
diaphram approximately one-half inch from the plywood (4 ft by & ft)
surface. The ground microphone was located off center in order to avoid

natural mode resonant vibration of the plywood square,

5.6.2 FAA Direct Read Measurement Systems — In addition to the recording

systems deployed by TSC, four direct read, Type-1 noise messurement
systems were deployed at selected sites., FRach noise measurement site
consisted of an identical microphone—preamplifier system comprised of a
General Radio 1/2-inch electret microphone (1962-9610) driving a General
Radio P-42 preamplifier mounted 4 feet (1.Zm) above the ground and
oriented for grazing incidence. Fach microphone was covered with a 3-inch

windscreen,

Three of the direct read systems utilized a 100-foot cable connecting the
microphone system with a General Radio 1988 Precision Integrating Sound
Level Meter (PISLM). 1In each case, the slow response A-weighted sound
level was output to a graphic level recorder (GLR). The GLRs operated at
a4 paper transport speed of 5 centimeters per minute (300 cm/hr). These
systems collected single event data consisting of maximum A-weighted Sound
Level (AL}, Sound Exposure Level (SEL), integration time (T), and

equivalent sound level (LEQ).

The fourth microphone system was connected to a General Radio 19818 Sound
Level Meter. This meter, used at site 7H for static operations only,

provided A-weighted Sound Level values which were processed using a micro

sampling technique to determine LEQ,
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All instruments were calibrated at the beginning and end of each test day
and approximately every hour in between. A& schematic drawing of the basic

direct read system is shown in Figure 5.5.

53.6.3 Deployment of Acoustical Measurement Instrumentation - This section

describes the deployment of the magnetic tape recording and direct read

noise measurement systems.

During the testing, T5C deployed six magnetic tape recording systems,
During the flight operations, four of these recording system were located
at the three centerline sites: one system at site 4, one at site 5, and
two at centerline center with the microphone of one of those systems at 4
feet above ground, the microphone of the other at ground level. The two
remaining recording systems were located at the two sidelines sites. The
Fas deployed three direct read systems at the three centerline sites
during the flight operatioms. Figure 5.6 provides a schematic drawing of

the equipment deployment for the flight operations,

In the case of static operations, only four of the six recorder systems
were used. The recorder system with the 4-foot microphone at site 1 moved
to site 1H. The recorders at sites 4 and 5 moved to 4H and 5H
respectively. The recorder at site 2, the south sideline site, was also
used. The three direct read systems were moved from the centerline sites
to sites 5H, 2, and 4H. The fourth direct read system was employed at
site 7H. Figure 5.7 provides a schematic diagram of the equipment

deployment for the statiec operations.
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ACOUSTICAL DATA REDUCTION

b.0 Acoustical Data Reduction — This section describes the treatment of

tape recorded and direct read acoustical data from the point of
acquisition to polnt of entry into the data tables shown in the appendices

of this document.

6.1 TS5C Magnetic Recording Data Reductien - The apnalog magnetic tape

recordings analyzed at the TS5C facility in Cambridge, Massachusetts were
fed into magnetic disc storage after filtering and digitizing using the
GenRad 1921 one—=third octave real-time analyzer. Figure 6.1 is a picture
of the TSC facility; Figure 6.2 provides a flow chart of the data
collection, reduction and out process accomplish by TSC personnel.
Recording system frequency response adjustments were applied, assuring
overall linearity of the recording and reduction system. The storéd 24,
one-third cctave sound pressure levels (5PLs) for contiguous one-half
second integration periods making up each event comprise the base of "raw
data."” Data reduction followed the basic procedures defined in Federal

Aviation Regulation (FAR) Part 36 (Ref. 3). The following sections

describe the steps involved in arriving at final sound level wvalues.

FIGURE 6.1
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6.1.1 Ambient Noise — The ambient noise is considered to consist of hoth

the acoustical background noise and the electrical noise of the
measurement system. For each event, the ambient level was taken as the
five to ten-second time averaged one-third octave band taken immediately
prior to the event. The ambient noise was used to correct the measured
raw spectral data by subtracting the ambient level from the measured noise
levels on an energy basis. This subtraction yielded the correctéed noise
level of the aircraft. The following execptions are noted:

1. At one-third octave frequencies of 630 Hz and below, if the
measured level was within 3 dB of the ambient level, the measured level
was corrected by being set equal to the ambient. If the measured level
was less than the ambient level, the measured level was not corrected.

2. At one-third octave frequencies above 630 Hz, if the measured
level was within 3 dB or less of the ambient, the level was identified as

"masked."

6.1.2 BSpectral Shaping — The raw spectral data, corrected for ambient

noise, were adjusted by sloping the spectrum shape at —2 dB per one—third
octave for those bands (above 1.25 kHz) where the signal to noise ratio
was less than 3 dB, i.e,, "masked" bands. This procedure was applied in
cases involving no more than 9 "masked" one=third octave bands. The
shaping of the spectrum over this 9-band range was conducted to minimize
EPNL data loss. This spectral shaping methodology deviates from FAR-36
procedures in that the extrapolation includes four more bands than

normally allowed.

6.1.3 Analysis System Time Constant/Slow Response — The corrected raw

spectral data (contiguous linear 1/2 second records of data) were
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processed using a sliding window or weighted running logarithmic averaging
procedure te achieve the "slow" dynamic response equivalent to the "slow
response” characteristic of sound level meters as required under the
provisions of FAR-36. The following relationship using four consecutive

data records was used:

0,1L, =2 0.1L.-1 0. 1L

YL, =
0-1L4-3) 10.21010.% 472y 40, 27010.9- 5140, 39710.0 ™) ]

L, = 10 Log [0.13(10.

where L; is the one-third octave band sound pressure level for the ith

one-half second record number.

6.1.4 Eandsharing of Tones - All calculations of PNLTM included testing

for the presence of band sharing and adjustment in accordance with the

procedures defined in FAR-36, Appendix B, Section B 36.2.3.3, (Ref. 6).

6.1.5 Tone Corrections - Tone corrections were computed using the

helicopter acoustical spectrum from 24 Hz teo 11,200 Hz, (bands 14 through
40). Tone correction values were computed for bands 17 through 40, the
same sert of bands used in computing the EPNL and PNLT. The initiation of
the tone correction procedure at a lower frequency reflects recognition of
the strong low frequency tonal content of helicopter noise. This
procedure is in accordance with the requirements of ICAQ Annex 16,

Appendix &4, paragraph 4.3. (Ref. 7)

b.1.6 Other Metrics — In addition te the EPNL/PNLT family of metrics and

the SEL/AL family, the overall sound pressure level and l0-dB down

duration times are presented as part of the "As Mpasured" data set in
Appendix A. Two factors relating to the event time history (distance
duration and speed corrections, discussed in a later section) are also

presanted.
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6.1.7 OSpectral Data/Static Tests — In the case of static operations,

thirty-two seconds of corrected raw spectral data (64 contiguous 1/2
second data records) were energy averaged to produce the data tabulated in
Appendix C. The spectral data presented is "as measured” at the emission
angles shown in Figure 6.3, established relative to each microphone
location. Also included in the tables are the 360 degree (eight emission
angles) average levels, calculated by both arithmetiec and energy

averaging.

Note that “"masked” levels (see Section 6.l.1) are replaced in the tables
of Appendix C with a dash (-). The indexes shown, however, were

calculated with a shaped spectra as per Section 6.1.2.

FIGURE 6.3

Acoustical Emission Angle Convention

Left Side
mﬂ
x5 ] 3167
TAIL 180° —=0° NOSE
135° ‘ 45°
a0°
Right Side
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6.2 FAA Direct Read Data Reduction - Figure 6.4 provides a flow diagram

of the data collection, reduction and output process effected by FAA
personnel. FAA direct read data was reduced using the Apple Ile
microcomputer and the VISICALO® software package. VISICALO® is an
electronic worksheet composed of 256 x 256 rows and columns which can
support mathematical manipulation of the data placed anywhere on the

worksheet, This form of computer software lends itself

to a variety of data analyses, by means of constructing templates
(worksheets constructed for specific purposes). Data files can be
constructed to contain a variety of information such as noise data and
position data using a file format called DIF (data interchange

format).

Data analysis can be performed by loading DIF files onto analysis
templates, The output or results can be displaved in a format suitable
for inclusion in reports or presentations. Data tables generated using
these techniques are contained in Appendices B and D, and are discussed in

Section 9.0.

6.2.1 Adrcraft Position and Trajectory — A VISICALOR DIF file was created

to contain the phote altitude data for each event of each test series for
the test conducted. These data were input into a VISICALO® template
designed to perform a 3-point regression through the photo altitude data

from which estimares of aircrafr altitudes could be determined for each

microphone lacarion.
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6.2.2 Direct Read Noise Data — Another template was designed to take two

VISICALC® DIF files as input. The first contained the "as measured”
noise levels SEL and dBA obtained from the FAA direct read systems and the
10-dB duration time obtained from the graphic level recorder strips, for

each of the three microphone sites,

The second consisted of the estimates of aircraft alritude over three
microphone sites, Calculations using the two input files determined two
figures of merit related to the event duration influences on the SEL
energy dose metric, This anzlysis is described inm Section 9.4. All of

the available template output data are presented in Appendix B,
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TEST SERIES DESCRIPTION

7.0 Test Series Description — The nolse-flight test operations schedule

for the TwinStar consisted of two major parts.

The Eirsat part or core test program Included the ICAO certification test
operations (takeoff, approach, and level flyover) supplemented by level
Elyovers at various altitudes (at a constant airspeed) and at warious
alrspeeds: (at a constant altitude), In addition to the ICAQ takeoff
operation, a second, direct climb rtakeoff flight series was included.
Alternative approach operations were also included, utilizing nine and
twelve degree approach angles to compare with the six degree ICAD

approach data.

The second part of the test program consisted of static operations
designed to assess helicopter directivity patterns and examine

ground-to—-ground propagation.

The informationm presented in Table 7.1 describes the Hughes 500D test
schedule by test series, each test series representing a group of similar
events, Each noise event is identified by a letter prefix, corresponding
to the appropriate test series, followed by a number which represents the
numerical sequence of event (i.e., Al, AZ, A3, &4, B5, Bf,...etc.). Im
some cases the actual order of test series may not follow alphabeticallyw,
as a D1, DZ, D3, D4, E5, E6, EB, HY9, HIO, HIl,... ete.). In the case of
static operations the individual events are reported by the acoustical
emission angle referenced to each individual microphone location (i.e.,
J120, Jle5, J210, J255, J300, J345, J030, J75). In Table 7.1, the test
target operational parameters for each series are specified along with

approximate start and stop times, These times can be used Lo reference
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corresponding meteorological data in Appendix G. Timing of fuel breaks
are also identified so that the reader can estimate changes in helicopter
weight with fuel burn-off. Actual operational parameters and position
information for specific events are specified in the -appendices of this

document.

The "standard takeoff" operation, elected by the manufacturer, consisted
of a direct climbout from a 5-foot hover, using the best angle of climb,
The reader is referred to Appendices E and F for appropriate cockpit
instrument and trajectory information necessary to fully characterize this

operation,

Figures 7.1, 7.2 and 7.3 present the test flight configuration for the

takeoff, approach and level flyover operations. A schematic of the actual

flight tracks is available in Figure 3.3.
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TEST SERIES
RUOK¥ HOS.

ks
J(A)

J(B)
K

AfAl-AB

B/B7-B13
c/C15-C18
D/ D19-D25

E/E26/E33

H/H34-H37
G/G38-C41
F/F42-F48
M/ M49-M53

N/ N54=N56

TABLE

Tal

TEST SUMMARY

AEROSPATIALE AS-355F TWIN STAR

DESCEIPTION OF SERIES

Hover in ground effect
Static/Flight Idle RPM
Static/Ground Idle RPM
Hov out of Grd Effect

START

6:05
6120
h:20
644

DUE TG POOR VISIBILITY THE

LFO, 500 Ft/0.9 VH
LF0, 500 Ft/0.8 VH
LF0, 500 Fe/0.7 VH
LFO, 1000 Ft/0.9 VH

ICAQ Takeoff, 63 MPH

9 Deg Approach, 73 MPH
Takeoff "STD"

6 Deg Approach, 63 MPH
LFO, 500 Ft/146 MPH VH

LFD, 500 Ft/86 MPH

7:56
8:11
8:33
B:48

9:06

FUEL BREAK

10:32

10:49

11:07

11:358

11:52

TIME

am
am
am
am

TEST PROGRAM WAS DELAYED

am

am

am

a

am

ain

am

am

am

dam

FINISH TIME

6317
h:43
B:43
6:57

B:08
£:26
B:46
9:04

9:43

10:44
10:59
11:30
11:49

11:58

dam
am
am
am

am

am

am

am

am

am

am

am

am

am

NOTES

8 Dir Angles
8 Dir Anples
8 Dir Angles
4 Dir Angles
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DOCUMENTARY ANALYSES

8.0 Documentary Analyses/Processing of Trajectory and Meteorological

Data - This section contains analyses which were performed to document

the flight path trajectory and upper air meteorolegical characteristics

during the TwinStar test program.

8.1 Photo-Alcitude Flight Path Trajectory Analyses — Data acquired from

the three centerline photo-altitude sites were processed on an Apple Ile
microcomputer using a VISICALC® (manufacturer) electronlc spreadsheet
template developed by the authors for this specific application. The
scaled photo-altitudes for each event (from all three photo sites) were
entered as a single data set. The template operated on these data,
calculating the straight line slope in degrees between the helicopter
position over each pair of sites. In additiom, a linear regressicn
analysis was performed in order to create a straight Iline approximation to
the actual flight path. This regression line was then used to compute
estimated altitudes and CPA's (Closest Point of Approach) referenced to
each microphone lecation (Mote: Photo sites were offset from microphone
sites by 100 feet). The results of this analysis are contained in the

tables of Appendix F.

vigcussion — While the photo—altitude data do provide a reasonable
description of the helicopter trajectory and provide the means to effect
distance correctlons to a reference flight path (not implemented in this
report), there is the need to exercise caution in interpretation of the
data. The following excerpt makes an important poilnt for those trying ro
relate the descent profiles (in approach test series) to resulting

acoustical data.




In our experience, attempts by the pilot to fly down a very narrow
VASI beam produce a continuously varying rate of descent. Thus while
the mean flight path is maintained within a reasonable degree of test
precision, the rate of descent (important parameter connected with
blade/vortex interactions) at any instant in time may vary much more
than during operational flying, (Ref. 8)
Further, care is necessary when using the regression slope and the
regression estimated altitudes; one must be sure that the site-to—site
slopes are similiar (approximate constant angle) and that they are in
agreement with the regression slope. If these slopes are not in
agreement, then use photo altitude data along with the site-to-site slopes
in calculating altitude over microphone locations. Also included for
reference are the mean values and standard deviations for the data

collected at each site, for each series. These data display the

variability in helicopter position within a given test series.




8.2 Upper Adr (500-2000 ft) Meteorolegical Data - This section documents

the coarse variation in upper air meteorological parameters as a function

of time for the June 7 test program. References are also made to surface

meteorological data.

The National Weather Service office in Sterling, Virginia provided
preliminary data processing resulting in the data tables shown in Appendix
H. Supplementary analyses were then undertaken rto develop time hiscories
of various parameters over cthe period of resting for selected altitudes.
Each time history was constructed using least square linear regression
techniques for cthe five available data points (one for each launch})}. The
plots attempt to represent the gross (macro) meteorological trends over

the test period.

Temperature — Figure 8.1 shows the time history of temperature {(degree
Celsius) for June 7, 1983, Between the hours of 7 and 9 a.m. we see a
slight temperature inversion up to the 500-foot level, comncurrent with
static and level flyover portions of the test. Aside from the presence of
this inversion layer, the air mass tends to be stable with a normal lapse
rate as one would expect for a typlcal summer day, with gradual warming of
the earth's surface as a function of time. For the takeoff/approach
portion of this test, only surface meteorologlical data were available.
National Weather Service records show surface temperatures on the order of

20 - 30°C for these test series,
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Relative Humidity — Figure 8.2 shows the (7-9 a.m.) time history of

relative humidity for June 7. From the figure, it can be seen that a
decrease in surface RH from 97% at 7 a.m. to 75% at 9 a.m. existed which
coincides with the expected burnoff of grounde moisture with solar heating
of the earth's surface. 8imilar decreases occur at the higher altitudes

as the figure shows.

The primary concern with relative humidity is its influence in controlling
atmospheric absorption of sound. In considering a center frequency of 500
Hz we see from reference ARP 886 (Ref. ) that a constant absorption
coefficlent is applicable for the stated range percent relative humidity.
The reader may consider undertaking a more extensive asseszment of

absorption influences.

Wind Data — Figure 8.3 and 8.4 show the time history of the wind velocity
from 7 a.m. €0 9 a.m. on June 7. Figure 8.3 shows the magnitude of the
head/taill wind component (5 to 10 knots), while figure 8.4 shows the
magnitude of the cross wind component (approximately 7 knots)., These wind
conditions as reported existed during the lewvel flyocver portion of the
test. The reader should note that wind direction (and its influence as a
head or tail wind) is related to the helicopter heading. During the test,
level flyover operations were conducted alternately in the 300 - 120°

directions to facilitate quick turnaround times between events.




During the takeoff/approach portion of this test, only surface
meteorological data from the National Weather Service were availahble,
Examinarion of this data reveals ground winds om the order of 10 knots
from the 330 direction, creating a headwind condition for takeoffs and a

tailwind condition for approaches.

Discussion - In the context of a noise measurement/flight test one
attempts to avold so—called anomalous meteorclogical conditions, (see ref,
3) a concept that is difficult to define. Although the reascons behind the
requirement to avoid "anomalous conditions” arose from concerns involved
with atmospheric absorption, one mighr extend the requirement to include
concerns for smooth flight, and normal attitudinal operation of the
helicopter. While extreme cross wind components and/or strong shifts in
wind in the vicinity of the test site might suggest the presence of
buffering or turbulance, it is primarily the pilot's reported ease or
difficulty in flying the heliceopter which identifies a potential problem.
While the data do sugpgest the presence of variation in wind speed and
direction (and the presence of moderate wind strength) they do not connote
extreme conditions which might lead to senous concern. Most importantly

there were no pilot reports of turbulence or difficulty in flight control,

As a final note, the influence of wind on blade-vortex interactions (a
strong function) cannot be completely addressed using the data presented
in this section. Rather, it is necessary to acquire data virtually
concurrent with the flight operations and in very close proximity to the
test helicopter. It is anticipated that future tests will employ tethered
ballon systems or acoustical sounding, SODAR systems in close proximity to

the test area.
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EXPLORATORY ANALYSES AND DISCUSSIONS

9.0 Exploratory 4dnalyses and Discussion ~- This section is comprised of a

series of distinct and separate analyses of the data acquired during the
Aercospatiale TwinStar noise measurement program. In each analysis section
an introductory discussion is provided describing pre-processing of data
(beyond the basic reduction previously described), followed by
presentation of either a data table, graph(s), or reference to appropriate
appendices, Each section concludes with a discussion of salient results

and presentation of coneclusions,

The folleowing list identifies the analyses which are contained in this

section,

9.1 Variation in noise levels with airspeed for level flyover
operations

9.2 BStatic data analysis: source directivity and hard wvs. soft
propagation characteristics

9.3 Comparison of noise data: 4-feot ws. ground microphones

9.4 Duration effect analysis

9.3 Anmalysis of variability in nofse levels for twe sites
egquidistant over similar propagation paths

9.6 Variation in noise levels with airspeed and rate of descent for
approach operations

9.7 Analysis of ground-to-ground acoustical propagation for a
nominally soft propagation path

9.8 Alr-to-ground acoustical propagation analysis

&7




9.1 Variation in Noise Levels with Airspead for Level Flyover

Operations = This section analyzes the variation in noise levels for
level flyover operations as a function of airspeed. Data acquired from
the centerline-center location (site 1) magnetic recording system (see
Appendix A) have been utilized in this analysis, All data are "as
measured”, uncorrected for the minor variations In altitude from event to

event.

The data scatter plotted in Figures 9.1 through 9.4 represent individual
noise events (for each acoustical metric)., The line in each plot links

the average observation at each target airspeed.

Discussion — The plots show the general trend that can be expected with an
increase in airspeed during level Flvover operations. It has been
observed that as a helicopter increases its airspeed, two acoustically
related events take place. First, the noise event duration is decreased
as the helicopter passes more gquickly, Second, the source acoustical
emission characteristics change. These changes reflect the aerodynamic
effects which accompany an increase in speed. At speeds higher than the
speed for minimum power, the power required (torgque) increases with an
increase in airspeed. These influences lead to a noise intensity versus
airspeed relationship generally approximated by a parabelic curve. At
first, noise levels decrease with airspeed, then an upturn occurs at

as a consequeénce of increasing advancing blade tip Mach number effects,

which in turn generate impulsive noise.

The nolse versus airspeed plots for the Aesrospatiale TwinStar are shown

Eor various acoustical metrics in Figures 9.1 through 9.4. The TwinStar

Cry
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noise level relationships follow a generally parabolic pattern (plotted as
straight line segments) characterized by a sharp upturn in noise level at
approximately 120 mph. A similar curve shape is ovserved for each metric.
This airspeed is equivalent to a translational Mach Number of 0.155 (120
mph x 1.467/1135.6) This airspeed dependent Mach Number increases by
0,013 For every 10 mph increase in airspeed. The rotational Mach Number
remains relatively constant at 6371 ({394 rpm/60) x (PI x 35.07)/1135.6).
Advancing tip Mach Number relationships corresponding to airspeeds are
presented in the table below. The point of inflection in the noise lavel
airpseed relationship is therefore assoclated with an advancing tip Mach
Number of approximactely 0.79. From this point forward, nolise level
increases approximatley 3 dB per 10 mph (3 dB/0.013 change in Mach

Number).

Tabla 9,1

IAS (MPH) My

90 .753
100 L7606
110 .779
120 o792
130 LB05
140 818
150 3 5

33!
Lad
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9.2 Static Operations: Analysis of Source Directivity and Hard vs. Soft

Path Propagation Characteristics — This analysis is comprised of two

principal components. Firsc, t@e plots shown in Figures 9.5 through 9.8
depict the time averaged directivity patterns for various statiec
operations for measurement sites located equidistant from the hover point.
The second component involves the fact that one of the two sites lies
separated from the hover point by a hard concrete surface, while the other
site is separated from the hover point by a soft grassy surface. The
difference in the propagation of sound over the two disparate surfaces is
reflected in the difference between the upper and lower curves in each
plot. A figure (Figure 9.9) is provided showing the microphone positions

and the hard and soft paths at the end of this section.

Time averaged (approximately 60 seconds) data are shown for acoustical
emission directivity angles (see Figure f.1) established every 45 degrees
from the nose of the helicopter (zero degrees), in a clockwise fashion.
Magnetic recording data plotted in these fipures can be found in Appendix
C for microphones 5H and 2. A schematic of the typical hover—in-ground

effect measurement configuration is shown in Figure 9.9.

Discussion — The followling paragraphs highlight salient features

assoclacted with static test data.

HIGE - Neoise data collected for the Hover-In-Ground-Effect operation are
shown in Figure 9.5. The TwinStar displays an acoustical radiation
pattern that is dominant on the left side of the aircraft. The minimum
and maximum noise levels occur for the 0 and 180 degree emission angles
corresponding to the nose and engine exhaust port respectively (see
Figure 1.1).
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Further, examination reveals that this left side dominance in emission

pattern cannot be attributed to placement of tall rotor system, but is

possibly due to the clockwise rotating main rotor interacting with

previously generated vortices. The average difference in neise levels

{hard versus soft path) is 6 db, clearly underscoring the influence of

surface characteristics on noise propagation.

HOGE — Noise data collected for the Hover-out—of-ground effect (HOGE)

operation are shown in Figure 9.6. As found for the HIGE operation, the

HOGE operation also displays an acoustic radiation patteran that is

dominant at the left side of the airgrafrc,

The minimm and maximum noise

levels are associated with the O and 225 degree emission angles

corresponding to the nose and left rear quadrant. The average difference

in noise levels propagated across hard and soft paths is 6 dB, reflecting

the influence of surface characteristics on the propagation of socund.
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Further examination of Figure 9.6 reveals that for 2 emission angles (133
and 180 degrees), the noise levels measured for the soft path are 2 to 3
dB greater tha those for the hard path., This anomolous result is 1ikely

associated with variant meterological conditions (especially wind)

influencing blade-vortex interactions,

Flight Idle - Woise data for the flat pitch, flight idle (FI) operation
are shown in Figure 9.7. This figure displays the same trend that has
been observed for other static operations in regard to acoustic emission
radiation pattern, However, for the FI operation, we see the maximum
noise levels ogccurring at the 270 degree emission angle, corresponding to
the left side of the aircraft. An interesting point worth noting is that
the 180 degree emission angle, corresponding to the engine exhaust ports
is 2 to 3 dB less in moise levels than the right side of the aircraft

where the tail rotor system is mounted.

Ground Idle — Figure 9.8 shows data collected for four directivity angles
for the relatively quiet ground idle operation. Significant differences
are observed in average sound level are for the two different paths under
consideration underscoring the significant role that ground surface
characteristies can play in heliport planning. While some differences are
observed in the directivity of acoustical radiation the overall pattern is

smoother and less characterized by sharp nodes and maxima.
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Environmental Impact — The table shown below presents observations

concerning noise impact and aceceptability based on consideration of
typical urban/community ambient noise levels and the levels or urban
transporctation noise sources, Interpretations assume that event durations
reflect static operational scenarios (usually one minute to 15 minutes).
In general, the interpretation of environmental impact requires careful
consideration of the ambient sound levels in the vicinity of the specific
heliport under censideration. A useful document for further

interpretation is Reference 9,

TABLE 9.2

A-Weighted Woise Level Ranges

60 dB - Urban ambient noise level
Mid 60's — Urban ambient noise level
70 dB — Hoise level of minor concern
Mid 70's - Moderately intrusive noise level
80 dB - Clearly intrusive noise level
Mid B0's = Potential Problems due to noise
90 dB - Noise level to be avoided for any length of time.

&8




SUoIISO4 auoydoidi 8
sda}g G ul sejejoy i23dodijay

£9

1DV M §
wybiaH pniS

3S9 | 9SIOf\ 49AO0H 433d0dIjoH

6'6 3HNOId




9.3 Comparison of Measured Sound Levels: & Foot vs. Ground Microphones -

This analysis addresses the comparability of noise levels measured at
ground level and at 4 feet above the ground surface. The tapic is
discussed in the context of noise certification testing requirements. The
analysis involves examination of differences between noise levels acquired
for ground mounted and 4-ft mounted microphone systems. The objectives of
this analysis are as follows: 1) observe the value and variability of
ground/4—ft microphone differences and identify the degree of phase
coherence and 2) examine the variation with operational

configuration,

The data employed in this analysis are from the microphone site #1
magnetic recording system (Appendix A). The mean differences between the
ground and four foot microphones are shown in Table 9.3 for eight

different test series,

In conducting this analysis, our initial assumption was that the
ground-mounted microphone experiences phase coherent pressure doubling (a
reasonable assumption at the frequencies of interest). At the 4-foot
microphone, one would expect to see a lower value, somewhere within the
range of 0 to 3 dB, depending on the degree of random verses coherent
phase between incident and reflected sound waves. 1t is also possible to
experience phase cancellation between the two sound paths, If
cancellation occurs at dominant frequencies, then one is likely to observe
noise levels at the 4-foot microphone more than 3 dB below the ground

microphone values, In fact, data presented in this section display

70




significant cancellation with instances of 5.7 dB (weighted metric) lower
levels at the &4—~foot microphone. Figure 9,10 provides a schematic of the
various "difference regions" associated with different relationships

between incident and reflected sound waves,

Discussion — It 1is argued that acquisition of data from ground-mounted
microphones provides a cleaner spectrum, closer to the spectrum actually
emitted by the helicopter=——that is, not influened by a mixture of
constructive and destructive ground refleetions. Theoretically, one would
be interested in correcting ground-based data to levels expected at 4 feet
or vice versa in order to maintain equally stringent regulatory policy.

In other words, to change a certification 1limit at a 4—ft microphone to
fit a ground-based microphone test, one theoretically would have to

increase the limit by an amount necessary Lo malntain equal stringency.

Examination of the results in Table 9.3 show that most differences do fall
between 3 and 5 dB. These results are consistent with theory and suggest
that a degree of cancellation typiclly accompanles the 3 dB difference one

would expect for random versus coherent phase relationships,

The variability in test results between operations modes displays no clear
pattern, The variation in difference in walues can be considered to
reflect differences in the "acoustical angle” or the angle of incidence at
the time of the maximum noise. These geometrical factors are also joined
by differences in spectral content in influencing resulting sound level
values, A narrow band analysis of the data would identify the speecifiec
frequencies where cancellation and reinforcement effects are present (and

dominant) for wvarlous operational modes.
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FIGURE 8.10
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TABLE 9.3

COMPARISDN OF

GROWND AND 4 FT. ¢1.2 M) HICROPHINE DATA

DELTA ¢B = (GHD WIC.) minus (4 FT. MIC.)

TARGET
SAMPLE 145
512E (KTS) SEL AL EPNL FNLTH
é 130.3 ] 4.8 5.2 3
é 114 Jal 4.9 3.4 3
3 101.5 3.4 2.7 3.7 2.8
7 130.5 3.8 3.8 g 347
B 43 2.9 3.4 3.1 2.8
7 43 3.8 3.8 3.4 4.2
4 43 3.4 3.3 3.3 2.8
4 63 3.9 3.4 4 4.1
WETGHTED AVERAGE 3.7 1.93 4.07 4.08
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9.4 Analysis of Duration Effects — This section consists of three parts,

each developing relationships and insights useful in adjusting from one
acoustical metric to another (typically from a maximum level to an energy
dose}. Each section quantitatively addresses the influence of the event

duration.

9.4.1 Relationships Between SEL, AL and ?ig - This analysis explores the

relationship between the helicopter noise event (intensity) time-history,
the maximum intensity, and the total acoustical energy of the event. Our
interests in this endeavor include the following:

1) It is often necessary to estimate an acoustical metric given only
part of the information reguired.

2) The time history duration is related to the ground speed and
altitude of a helicopter, Thus any data adjustments for different
altitudes and speeds will affect duration time and consequently the SEL
(energy metric)., The requirement to adjust data for these effects often
arises in environmental impact analysis around heliports. 1In addition,
the need to implement data corrections in helicopter noise certification

tests further warrants the study of duration effects.

Two different approaches have been utilized in analyzing the effect of

event 10-dB-down duration (DURATION or T10) on the accumulated energy

dose (Sound Exposure Level).
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Both techniques are empirical, each employing the same input data but

using a different theoretical approach to describe duration influences.

The fundamental question one may ask is "If we know the maximum A-weighted
sound level and we know the 10-dB-down duration time, can we with
confidence estimate the acoustical energy dose, the Sound Exposure Level?"
A tephrasing of this question might be; If we know the SEL, the AL, and
the 10-dB-down duration time (DURATION), can we construct a universal

relationship linking all three?

HBoth attempts to establish relationships involve taking the difference
between the SEL and AL (delta), placing the delta on the left side of the
equation and solving as a function of duration. The form which this

function takes represents the differences in approach,

In the first case, one assumes that delta equals some constant K(DUR)

multiplied by the base 10 logarithm of DURATION, i.e.,

SEL - AL = K(DUR) x LOG(DURATION)

In the second case, we retain the 10 x LOG dependency, consistent with
theory, while achieving the equality through the shape factor, Q, which is
some value less than unity i.,e., SEL-AL = 10 x LOG(Q x DURATION). 1In a
situation where the flyover noise event time history was represented by a

step function or square wave shape, we would expect to see a value of

L



equaling precisely one. However, we know that the time history for
typical non—impulsive event is much closer in shape to an isoceles

triangle and consegquently likely to have a { much closer to 0.5.

Another possible use of this analytical approach for the assessment of
duration effects is in correcting nolise certification test data which were

acquired under conditions of nonstandard ground speed and/or distance.

Discussion — Each of the noise template data tables 1lists both of the
duration related figures of merit for each individual event (see

Appendix B). One immediate observation is the apparent insensitivity of
the metrics to changes in operation, and the extremely small variacicn

in the range of metric values, nearly a constant ( = 0.4 and a stable K(A)
value of 7.0. Data have been plotted in Figure 9,11 which show the minor
variation of both metrics with airspeed for the level flyover operation
for the microphone site 1 direct read system. The lack of variation in
the parameters, suggests that a simple and nearly constant dependency
exists between SEL, AL, and log DURATION, relatively unaffected by changes
in airspeed, in turn suggesting a consistent time history shape for the
range of airspeeds evaluated in this test. As SEL ilncreases wich
airspeed, the increase appears to be related Co iIncrease in Alyy but

mitigated in part by reduced duration time ( and a nearly constant

ECA)=T).
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It is interesting to note that similar results were found for the Bell 222
helicopter, (Ref.10) suggesting that different helicopter models will have
similar values for K and Q. This implies that it would not be necessary
to develop unique constants for different helicopter models for use in
implementing duration corrections. Caution is raised, however, to avoid
any firm conclusion, The possibility exists that this particular
analytical technique lacks the sensitivity necessary to detect distance

and airspeed functiomality.

9.4.2 Estimation of 10 dB Down Duration Time - In some cages, one does not

have access to 10 dB down duratin time (DURATION) information. A moderate

to highly reliable technique for estimating DURATION for the TwinStar is

developed empirically in this section.
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The distance from the helicopter to the observer at the closest point of
approach (expressed in feet) divided by the airspeed (expressed in mph)
yields a ratio, hereafter referred to as (D/V). This ratio has been
compiled for various test series for micorphone sites 1,2 and 3 and has
been presented in Table 9.4 along with the average DURATION expressed in
seconds. A linear regression was performed on each data set in Table 9.4
and those resulrs are also displayed in Table 9.4. Here one observes
generally high correlation coefficients, in the range of 0.75 to 0.92.
The regression equations relating DUBRATION with D/V are given as

Centerline center, Microphone Site 1:
Ti0 = [2.75 x (D/V) ] + 3.6

Sideline South, Microphone Site 2:
T10 = [2.15 % (B/V) ] + 7.3

Sideline North, Microphone Site 3:
Tip = [1.33 x (D/V) ] + 8.6

It is interesting to note that each relationship has a similar slope but
the sideline site equations exhibit intercept values roughly &4 units
(seconds) greater than the centerline site equation. This demonstrates
that sideline sites generally experience flyover time histories which are
longer and less peaked than the centerline site for a given distance and
velocity. Because the regression analyses were conducted for a population
consisting of all test series {(which involved the operations in both

directions) it is not possible to comment on left-right side acoustical

directivity of the helicopter.

In summary, one sees that knowledge of the helicopter distance and
velocity will enable an observer reasonably estimate the 10 dB down

duration time.
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TABLE 7.4

DURATIMN (T-10) REGRESSION ON DAV

HELICOPTER: TWINSTAR
S1TE |
COCKPIT

PHOTD
TEET DaATA AVE AVE

SERIES V AVG DUR(A) EST ALT o

A 13243 12,7 4Bd.4 37 LINEAR

B 147 I53.2 b It} 4.3 REGRESSION

C 132.8 14 424 3.4

D 133,43 2.4 7434 .l SITE #1

E 81 2.7 402 7.9

F70.83 13.2  340.8 3.1 ELOPE

H a7.5 2.7 5.9 b INTERCEPT

H 74,25 23 398.4 3.4 R 50,

N 141.8 I1.3 4851 3.4 R

N 84 20,3 484.4 7 SAMPLE
SITE 2

A 132,43 153 4904 3.2 LINEAR

B 1.7 19.9 711 b2 REGRESSTON

C 132.8 4004 3.2

D 133.43 23,4 1044.1 g SITE &2

E 6l 33.2 TG 12.7

Fo70.83 2hs 6l B.4 SLOPE

B &7.3 2.7 dadiZ 9.8 INTERCEPT

H 7425 32 4.2 B.5 R S0,

N 141.8 15.8 471 4.5 R

il Bé 23.3 492 B SAMPLE
SITE 3

A 132.43 5.4  470.8 3.2 LINEAR

B 114,71 1.7 7113 4.2 REGRESSION

C 132.8 7.3  490.2 5.2

D 133.43 22.9 [D&4 B SITE #3

E él 26.4 757 13.4

F o 70.83 14,2 &0a.2 B.9 SLOPE

b 47.5 0.5 434.8 7.7 INTERCEFT

H 25 15.4  423.4 8.4 R 50,

N 1418 13,7 §90.4 4. R

N 84 21.7 452 B SAMPLE

T8

2:78
3.43
83
91
11

2.13
7.29
L]
87
10

1.33
B.é4
1-&]
78
L]



Synthesis of Results - It is now possible to merge the results of Section

9,4.1 with the findings above in establishing a relationship linking (D/V}

with SEL and AL, Given the approximation

SEL = AL + (10 x LOG(0.45 x DURATION))

it is possible to insert the computed value for T10 (DURATION) into the

equation and arrive at the desired relationship.

It is worth noting that the general trend observed for the TwinStar
(longer sideline duration) is just opposite the trend observed for the
Hughes 500D (Ref. 1 ). It appears necessary to carefully consider
helicopter specific characteristics in estimating SEL or other energy-dose
acoustical merriecs at sideline leocations. It is significant to note that
slopes computed above for the TwinStar are very similar (approximately 2)
to those observed for the Hughes 300D, suggesting that a general
relationship would do well in assessing changes or differentials in noise

level with changes in either distance or velocity.

9.4.3 Relationship Between SEL minus AL and the Ratio D/V — The

difference between SEL and ALy or conversely, EPNL and PNLTy (in a
certification context), is referred to as the DURATION CORRECTION. This
difference is clearly controlled by the event T10 or (10 dB down
duration time) and the acoustical energy contained within those bounds.
As discussed in previous sections, the T10 is highly correlated with the
ratio D/V. This analysis establishes a direct link between D/V and the

DURATION CORRECTION in & manner similar to that employed in Section 9.4.%.
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Table 9.5 provides a summary of data used in regression analyses for
microphones 1, 2 and 3. The regression equations along with other

statistical information is also provided in Table 9.5,

It is encouraging to note the strong correlations (coefficients greater
than 0.85) which suggest that SEL can be estimated directly (and with
confidence) from the ALy and knowledge of D/V. It is also interesting

Lo note that similar regression equations. As mentioned in Section 9.4,.2,
it is difficult to comment explicitly (and quantitatively) on source
directivity because operations were conducted in both directions.
Regardless, one can see that centerline/sideline differences exist. The
reader is cautioned not to expect these relationships to necessarily hold

for D/V ratios beyond the range explored in these anaylses,
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TABLE 9.5
SEL-Alm REGRESSION ON DAV

HELICOPTER: TWINSTAR

SITE 1
COCKPIT
PHOTO
TEST DATA  ANG AVE
SERIES V AVG SEL-Alm EST ALT oA
A 132,43 7.1 484.4 3.7 LINEAR
B 114.71 7.8 513 4.3 REGRESSION
C 132.8 7.7 484 3.4
b 133.43 ¥.4 9434 7.1 SITE #1
E &1 10.4 alz 5.9
F o 70.B3 7.4 340.9 it SLOPE
G 7.3 Fooo445.9 .4 INTERCEFT
H 74.25 B.7 398.4 U.4 R &a,
N 1418 d.ad 485 34 R
N Bé B.6  4B4.4 3.7 SAMPLE
SITE 2
A 132.43 B.l  4%0.4 d.2 LINEAR
B 114,71 8.8 11 .2 REGRESSION
L 1328 9.2 490.4 5.2
b 133.43 2.4 104d.1 a SITE #2
E 8l 11.3 7775 12.7
F70.83 0.3 &10.1 B.& SLOPE
b 7.5 0.4  484.2 5.8 INTERCEPT
H 74.25 11.4  433.2 8.3 R 58,
N 141.8 7.8 891 4.7 R
N Bd 9.4 692 8 SAMPLE
SITE 3
A 132,43 B.1  490.8 3.2 LINEAR
B 114,71 gy 7113 b.2 REGRESS]1ON
C 1328 8.7 &90.2 3.2
b 133.43 9.3 1046 B SITE #3
E ¢l 10.3 37 2.4
F 70.83 8.3 405.2 B.3 SLOPE
b 67.3 9.5  454.8 9.7 INTERCEFT
K 74.25 8.1 625.6 B.4 R 58.
H 14l.8 7.7 &90.8 4.7 R
N Bé 7.3 892 ] SANPLE

81

«0d
9.21
.64
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0
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9.5 Analysis of Variability in Noise Levels for Two Sites Over Similiar

Propagation Paths — Thisz analysis examines the differences in noise levels
observed for two sites each located 500 feet away from the hover point
over similar terrain. The objective of the analysis was to examine
variability in noise levels associated with ground-to-ground propagation
over nominally similar propagation paths. The key word in the last
sentence was nominally,...in fact the only difference in the propagation
paths is that microphone 1H was located in a slight depression, (elevation
is minus 2.5 feet relative to the hover point), while site 2 has an
elevation of plus 0.2 feet relative to the hover point. This is a net
difference of 2.7 feet over a distance of 500 feet, This configuration
serves to demonstrate the sensitivity of ground-to-ground sound

propagation to minor terrain variationms,

Discussion — The results presented in Table 9.6, 9.7, and 9.8 show the
observed differences in time average noise levels for eight directivity
angles and the spacial average. In each case, magnetic recording data
(Appendix C) have been used in the analyses. 1t is observed that
significant differences in noise level occur for the low angle

(ground-to-ground) propagation scenarios.

It is speculated that very minor variations in site elevation (and

resulting microphone placement) lead to site-to-site differences in the
measured noise levels for static operations., Differences in microphone
height result in different positioms within the interference pattern of

incident and reflected sound waves. It is also appropriate to consider

B2



whether variation in the acoustical source characteristics contributes to
noise level differences. In this analysis, magnetic recording data from
microphone site 2 are compared with data recorded at site 1H approximately
one minute later. That is, the helicopter rotated 45 degrees every sixty
seconds, in order to project each directivity angle (there is a 45 degree
sePar;tiun between the two sites). In addition to source variation, it is

also possible that the helicopter "

aim," based on magnetic compass
readings may have been slightly different in each case, resulting in the
projection of different intensities and accounting for the observed
differences, A final item of consideration is the possibility of
refraction of sound waves (due to thermal or wind gradients) resulting in
shadow regions. It is worth noting that, generally, similar results have

been observed for other test helicopters (Bell 222, ref. 10; Aerospatiale

Dauphin, ref. 11).

Regardless of what the mechanisms are which create this variance, one
perceives that static operations display intrinsically variant sound
levels, in both direction and time, and also potentially variant (all
other factors being normalized) for two nominally identical propagation

paths.
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TABLE 9.6

CIMPARISON OF
WOISE VERSUS DIRECTIVITY ANGLES
FOR

TWl SOFT SURFACES
HELICOPTER: TWINSTAR

UPERATION: HOVER-IN-GROUND

DIRECTIVITY ANGLES (DEGREES) Law(340 DEBREE)

SITE 0 45 b 135 180 223 2 13 ENERGY ARITH.

LEQ LED LEQ LE@ LEA LE@ LER LED LER LE@

S0FT IH 8l bé. 5 8.2 4.8 §7.3 bd.é 68,1 47.2 dd 45,3
SOFT 2 &7 72.2 70.4 734 73.7 7.4 733 &7.8 72.8 72.1
DELTA dB 6] 5.7 9.2 8.4 g.d g 3.2 2.4 4.8 .8

¥ DELTA dB = (SITE 1H) minus (SITE 2)

TABLE 9.7

CIHMPARISTN OF
NOISE VERSUS DIRECTIVITY ANGLES
FOR

TWD SOFT SURFACES
HELICOPTER: TWINSTAR

OFERATION:  HOUER-OUT-OF-GROUND

DIRECTIVITY ANGLES {DEGREES) Lavi340 GEGREE)

EITE 0 43 | 135 180 225 7 313 BMERGY  ARITH.

LED LER LEG LED LEd LEG LEE LEQ LED LEd

SOFT IH 8.3 72,3 48.3 74 78.4 7.2 71.1 8,9 74.5 72.1
5OFT 2 723 78,2 73.1 79.4 83 78.2 74.8 73.3 8.2 75,9
DELTA dB 3.8 3.7 5.8 R 4.4 0 3.7 B4 3.7 4.8

+ DELTA dB = (BITE 1K) minus {SITE 2) 5t




HELTCOFTER: TWINSTAR

OPERATION: FLIGHT IDLE

TABLE 9.8

COHPARISEN OF
NOISE VERSUS DIRECTIVITY ANGLES
FOR
Tl SOFT SURFACES

DIRECTIVITY ANGEES (DEGREES)

Lau(3s0 DEGREE!

EITE

i 435 # 135 180 223 270 313 ENERGY ARITH,

LED LED LEQ LE@ LEE LEB LEE LEG LEd LEG

SOFT 1N Jbit o7.8 al.2 4241 all.8 42.8 6.2 57,7 el é T
50FT 2 &5 87,3 7 73.4 68,4 725 1.3 &7 70,4 a7.7
DELTA dB .4 1.3 5.8 11.3 7.8 R 6.3 fid 9.8 B3

¥ DELTA dB = (51TE IH} minos ¢SITE 2)




9.6 Variation in Moise Levels With Airspeed for 6 and 9 Degree Approach

Operations - This section examines the variation in noise level for
variations in approach angle. This analysis has two objectives: First,
to evaluate further the realm of "Fly Neighborly" operating possibilities,
and second, to consider whether or not it is reascnable to consider
establishing a range of approach operating conditions for noise
certification testing. The appropriate "as measured" acoustical data,
contained in Appendix A, have been tabulated in Table 9.9 and plotted

(corrected for the minor differences in altitude) in Figures 9.12 - 9,13.

Discussion - In the approach operational mode, impulsive (banging or
slapping) acoustical signatures are a result of the interaction between
vortices (generated by the fundamental rotor blade action) colliding with
successive sweeps of the rotor blades (see Figure 9.14). As reported im
reference 11, for certain helicopters, maximum interaction occurs at
airspeeds in the 50 to 70 kuot range, at rates—of-descent ranging from 200
to 400 feet per minute. When the rotor blade enters the vortex region, it
experiences local pressure fluctuations and associated changes in blade
loading. These perturbations and resulting pressure gradients generate

the characteristic impulsive signature,

The data presented in Figures 9.12 and 9,13 portray the variation in noise
level along the ground track for centerline noise sites as the approach
angle (rate of descent) changes from 6 to 9 degrees) with airspeed held
nominally constant. The 9 degree approach achieves a 2 dB reduction in
the intensity metric Ly at each measurement site. The reduction in the

energy metric SEL varies from 0 to 2 dB from site &4 to site 5.

<13
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It is believed that the descent changes the vertical location of the trip
vortices with respect to the blades, thereby changing the relative degree
of interaction., From a certification standpoint, it is clear that the 6
degree approach would present a greater noise exposure than the

alternative procedure examined,

It is noted that a more exhaustive series of testing would include 5 to 6
airspeeds (and addirional microphone locations) for each approach angle.

A recent study conducted in France (ref. 14) included a matrix of 24
microphones, While cost and logistical constraints make this unrealistic
for evaluation of each civil transport helicopter, one would be prudent to
evaluate several centerline and sideline microphone locations for a
variety of operational modes in any im—depth "Fly Neighborly" flight

test program,

Two other points of concern in developing "Fly Neighborly" procedures are
safety and passenger comfort. Rates of descent, airspeed, initial
approach altitude and "engine—out" performance are all factors requiring
careful consideration in establishing a noise abatement approach.

Finally, while certain operational modes may significantly reduce noise
levels, there may be an unacceptable acceleration /deceleration or
rate—of-descent imposed on passengers, This clearly presents an important

trade-off to consider in any commercial air-shuttle operation.

B8
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Table 9.5

Average Average
AL SEL
5° 83.9 91.3
g” 80.9 89.6
9% adjusted 81.8 90.2

The § degree metrics were adjusted for
differences in altitude between the 6
and 9 degree approach operations.
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9.7 Analysis of Ground-to-Ground Acoustical Propagation

9.7.1 Soft Propagation Path - This analysis involves the empirical

derivation of propagation constants for a nominally level, “soft" path, a
ground surface composed of mixed grasses. As discussed in previous
analyses, there are several physical phenomena that influence the
diminution of sound over distance. Among these phenomena, spreading loss,
ground-to-ground attenuation and refraction are considered dominant in

controlling the observed propagation constants,

A-waighted LEq data for the four static operational modes— HIGE, HOGE,
Flight Idle, and Ground Idle- have been analyzed in each case for eight
different directivity angles. Direct read acoustical data from sites 2
and 4H have been used to calculate the Propagation constants (K) as

follows:

K = (Leq(site 2) - Leq(site 4))/Log (2/1)

where the Log (2/1) factor represents the doubling of distance
dependency (Site 2 is 492 feet and site 4H is 984 feet from the hover

point).

For each mode of operation, the average (over various directivity angles)

Propagation comstant has also been computed,

The data used in this analysis (derived from Appendix C) are displayed in

Table 9.10 and the results are summarized in Table 9.11.
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Discussion — The results shown in Table 9.13 exhibit some minor variation
From one operational mode to the next. For the higher elevarion angle
operation (HOGE), one observes a smaller rate of attenuation. In the case
of HIGE and Flight Tdle (FI}, one observes similar and rather consistent
attenuation constants, 37 and 35 respectively. The attenuation constants
tend to differ from results reported for the Hughes 500D (ref. 10) and the
Aerospatiale Dauphin (ref. 9). As noted in those reports, the
relationship dB = 25 log (d1/d2) provided a reasonable working
approximation for calculating ground-to-ground diminution of A-weighted

sound levels over nominally soft paths out to a distance of 1000 feet.

In the case of the TwinStar however, it appears that a relationship of the

form AdB = 35 log (dl/d2) would perform better.

9.7.2 Hard Propagation Path — This part of the analyses involves the

empirical derivation of constants for sound propagation over a "hard”
propagation path, a concrete/composite taxi-way surface. The analytical
methods described above (5ection 9.7.1) are applicable using data from
sites 5H and 7H, respectively 492 and 717 feet from the hover site. The
data used in this analyses (derived from Appendix D) are shown in Table
9.11 and the results are summarized in Table 9,13, The salient feature of
this scenario is the presence of a ground surface which is highly

reflective and wmiform in composition.

D
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Discussion - The results shown in Table 9.1 exhibit significant mode to
mode variation. The results for HOGE are somewhat anomolous, perhaps
controlled by refraction effects. At the time of the static test, there
was very little wind, a minor temperature inversion and very high
humidity. In spite of certain anomolous results, it ig clear that sound
propagates more efficiently over a hard path, Calculations produce a mean
propagation constant of 20 (setting aside the HOGE results) as opposed to
35 for the soft path., In conducting environmeatal impact analyses
involving hard paths between heliports and noise sensitive areas, it
appears reasonable Lo use an approximate propagation costant of 20 in

analyzing propagation out to distances of 1000 feet,
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TABLE 4,10

DATA UTILIZED IN CIMPUTING EMPIRICAL
PROPAGATIIN CONSTANTS (i)

FOR SOFT SITER (4K + 2}

TWINSTAR
4-7-83

SITE 4H (SOFT 5ITE)

HISE LE@ FLT.IDLE LED bR IDLE HOGE LED

-0 58,40 J-0A 5,30 J-1B 44,40 K-0 o470
1-318 A0 .40 =315 57.80 J-3158 M K-d313 49,50
I-27] 63,40 J-270A 41,30 J-2708 48,70 K-270 8540
I-225 44,10 R 40.89 J~2258 M K-22% 49 .4
I-181 43.40 J-1B0A 39,20 J-1808 49,40 K-180 7440
1-135 40.80 J-1354 82,70 J-1358 N4 K-13% 75.40
1-91 3880 J-704 59.10 J-70B 49,40 k-1 67,30
1-45 41.40 J-43 59.20 1-438 Ma K-43 44,70

SITE 2 (BOFT SITE)

HIGE LEQ FLT.1OLE LED D IDLE LED HogE LEQ

-0 4770 J-04 43,40 408 34,50 k-0 72.80
I-314 70,70 i~ 47.80 J-3158 A H-315 73.30
1-270 73,80 J-2714 72,10 4-2708 58.a0 #-270 73.50
1-223 73,20 J=22A 72.440 J-22%4 N4 K-223 79.70
I-180 76.20 J=180A &%.00 J-1808 HA K-1810 83.50
I-133 73.00 J=13% 73.40 J-1338 N4 K-133 an.20
=70 70.%0 J-7lA 4%.70 J-708 58,90 K-50 7590
1-45 72.40 J=45A Fé J-438 Hé K-45 77.10




TABLE 9.11

EMPIRICAL PROPOGATION CONSTANTS (K)
FOR SOFT SITES (4H+2)

FLT.IDLE

ENISSION HIGE GHD L 1OLE
ANGLE K K K
N 0 - .87 - 33_;;““_ 1;3.5?
315 34,33 33.33
27 34,00 35.33 32.47
223 37.00 38.47
180 42.00 32,67
133 40.47 36.33
50 40,33 35.33 31.87
43 36,47
ERGE .08 3505 2.7

#% AVERAGE WITHOUT 135 DEGREE

94

25 .47
18.00
28.47

41.33

32.27%%



TWINSTAR
&r7-E83

SITE SH (HARD 51TE)

HIBE

-0
1-43
I-0
I=313
=27
I-2%
I-18]
1-135

SITE 7H {MARD BITE)

HIGE

1-%0
I-45
I-0
=315
I-270
=225
1-14i
i-135

LER

72.40
74,40
74,00
7730
81 .50
g4.90
B30
79.50

LEE

&7.23
71.23
49,85
7.1
78.48
80.62
7.87
73.50

DATA UTILIZED IN COMPUTING BMPIRICAL

TABLE 9.12

PROPABATION CONGTANTS (KD

FOR HARD SITES (5H + 7H)

FLT.IDLE

J=70A
J-434
J=0R
J-315
J=270A
d=2250
J-130A
d-1354

FLT.IDLE

J-904
J-43A
J-0A
J-3154
J-270A
J-2254
J-180A
J-13#

LEG

75,40
7500
.30
74,58
82,00
7. 80
78,90
17,40

LER

49,85
68.02
43.58
71,48
7.3
f3.407
47,73
AN o

BRM L IDLE

J-7lB
-8
J-08
d~3LaH
4-2708
J-2238
J-1a08
J-1338

BNR L IDLE

4=%1g
J-458
J-0B
J-3158
4=2708
J-2258
J-181B
J=1358

LER

&340

HOBE

H-%0
K-45
bl
k=310
K-374
K-228
K-180

¥=135

LE@

78,30
757,40
73,30
74,08
77.78
84.40
BL.90

LED

7905
77,14
48,47
72,48
7533
B3.14
7864
F4.34




TABLE .13

ENPIRICAL PROPOGATION CONSTANTS (K)
FOR HARD SITES (SH+7H)

EMISSION HIGE FLT.I0LE BND. T0LE HOGE
ANGLE K K K K
. 0 17.90 -1?11? 22.497 - 10.83

43 17.23 3.7 7.80

0 13.70 22.40 34.70 11.77

A5 13.%7 16.07 11.17

20 7.40 18.73 23.20 7.90

25 14.27 17.%7 §.87

180 18.10 23.90 20.50 10.20
135 19.73 20,83

NERGE 1554 2.2 5.2 o9

14,41 %%

¥ AVERAGE WITHOUT 270 DEGREE ANGLE

W
o



9.8 Air-to-Ground Acoustical Propagation Analysis — The approach and

takeoff operations provided the opportunity to assess empirically the
influences of spherical spreading and atmospheric absorption. Through
utilization of both noise and position data at each of the three flight
track centerline locations (microphonmes 5, 1, and 4), it was possible to

determine air-to-ground propagation comnstants.

Cme would expect the propagation constants to reflect the aggregate
influences of spherical sgpreading and atmospheric absorption, It is
assumed that the acoustical source characteristics remain constant as the
helicopter passes over the measurement array. In past studies (Ref. 10,
Ref. 11, Ref. 12), it has been observed that this assumption is reasonably
walid for takeoff and level flyover operations. In the case of approach,
however, significant variation has been evident. Because of the
spacial/temporal variability in approach sound radiation along the (1000
feet) segment of interest, approach data have not been utilized in
estimating propagation constants. As a final background note relating to
the assumption of source stability, a helicopter would require
approximately 10 seconds, travelling at 60 knots, to travel the distance

between measurement sites &4 and 5.

In both the case of the single event intensity metric, AL, and the single
event energy metric, SEL, the difference between SEL and AL is determined
for each pair of centerline sites, The delta in each case 1s then sguated
with the base ten logarithm of the respective altitude ratio multiplied by
the propagation constant (either KA{AL) or KA(SEL), the walues to be

determined.

a7



Data have also been analyzed from the 500 and 1000 foot level Elyover
operations and the KA(AL) has been computed. In this case data were
pooled for all centerline sites (5, 1, and 4) in the process of arriving

at the propagation constant.

The takeoff analyses are shown in Table 9.14 and 9.15 and are summarized
in Table 9%.16. Results of the level flyover calculations are presented Iin
Table 9.18. The level flyover and takeoff analyses are also accompanied
by a tabulation of results from three previous reports (Tables 9.18 and

9.19).

Discussion -~ In the case of takeoff data (Table 9.16) one observes a
propagation constant of 24.5 (the midway point for two highly variant
results, 20 and 30). This wvariation suggests that the source frequency

content plays a significant role in influencing rate of attenuation.

In the case of level flvover data (Tahle 9.18), one cbserves a wvalue of
approximately 20, somewhat lower than the results found for the Dauphin
and the Huges 500 D. A comparison to the Bell 222 (ref. 10), however,
does not fare so well (Bell 222, KA(AL) = 27.8). This difference is
likely associated with disparate source frequency content and different

absoprtion characteristics on the various test days.

Table 9.20 provides a brief examination of propagation constants for the
EPNL acoustical metrie, used in noise certificarien. Calculations show a
constant of approximately 13. This constant is in contrast to results for
other helicopters summarized in Table 9.2l. The reader may consider
computing propagation constants for other acoustical metries as the need

arises.



TABLE 9.14 TABLE 3.15

HELICOPTER: TWINSTAR HELICOPTER: TWINSTAR
TEST DATE: 4-7-83 TEST DATE: 4-7-83
OPERATI(M: [CAD TAKEDFF OPERATION: STANDARD TAKEOFF
TARGET TAS=43 HPH TARBET 14S=43 HPH
MIC. 5-4 HIC, 5-4
EVENT NO.  KP(AL) KP{SEL EVENT NO, KP(AL) KP(SEL)
638 8.8  17.4
£24 128 10.9
E37 15 i1.4 G637 34.5 18.7
E23 8.8 16,1 G40 21.2 15.2
£29 2 2.4 641 248 12.4
£30 .9 124
(%] 21 12,9 AVERAGE 9.3 14
£32 2.5 12
£33 20,2 12,8 5TD. DBV 5.04 2.78
AVERAGE  19.5 1.8 90% C.1. 5.93 3.7

570, DEW 2,10 .94

o Cils .41 | 063
TABLE 9.16 TABLE 9.17
Summary Table of Propagation Summary Table for Takeoff Operation
Constants for Two Takeoff Operations AL Metric
1CAD Takeoff 19.5
Standard Takeoff 29.3 Propagation
Helicopter Constant (k)
Average T4 Eell 222 N/A
Aerospatiale
Dauphin 2 20.06
Hughes 500D 21015
Aerospatlale
TwinStar 24.4

Average 22,07




TABLE 9.18
TWINSTAR

LEVEL FLYOVER PROPAGATION--AL

AL
OPERATION HIC § HIC | MIC 4 WEIGHTED
AVERAGE
N= 4 & ]
300 (0. Ph) G AL= 7.7 77.8 7.3 77.40
5TD DEV= o 7 F
N= 7 7 7
10007 <0.3Vh) AVG AL= 72.4 71,5 7.3 71.80
5TD DEV= ¥ 3 |
K= AdB / LOB(#45,72 / 488.15) Hdb= 3.80
K= 3.80 / 2872093
k= 20.1%
TAELE 9.1%

SUMMARY FOR LEVEL FLYOVER OPERATION

AL METRIC

HELICOPTER FROPAGATION CONSTANT (K)
BELL 222 21.08
AERDSPATIALE

DAUPHIN 2 21.40
HUGHES 3000 20.81
AERDSPATIALE

TWINSTAR 20.1%

AVERAGE = 20.87

100




TABLE .20
THINSTAR

LEVEL FLYINER PROPAGATION--EPNL

EPNL
DOPERATION NIC 3 NIC | HIC 4 WEIGHTED
AVERAGE
N= d b é
2007 (0.Wh)  AVG EPNL= B8.8 88.7 Be.4 B8.43
§TD DEV= 4 ol o
h= 7 5 7
10007 (0.™h)  AVE EPNL= Bi.1 84.4 84.4 B, 64
51D DEV= ot b o8
K= AdB / LOG(945.72 / 488.15) DdB= 3.78
K= 4.98 / .2872093
k= 13.84
TABLE 9.21
SUMHARY TABLE FOR EPNL
HELICOPTER PROPABATION CONSTANT (K)
BELL 222 14,33
AEROSPATIALE
DAUPHIN 2 18.47
HUGHES 5000 14.80
AERDSPATIALE
TWINSTAR 13.84

AVERAGE =  15.41
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APPENDIX A

Magnetic Recording Acoustical Data and Duration Factors
for Flight Operations

This appendix contains magnetic recording acoustical data acquired during
flight operatioms. A detailed discussion is provided in Section 6.0 which
describes the data reduction and processing procedures. Helpful cross
references include measurement location layout, Figure 3.3; measurement
equipment schematic, Figure 5.4; and measurement deployment plan, Figure
5.7. Tables A.a and A.b which follow below provide the reader with a
guide to the structure of the appendix and the definition of terms used
herein.

TABLE A.a

The key to the table numbering system is as follows:

Table Ho. . 1-1. 1

Appendix No.

Helicopter No., & Microphone Location

Page Wo. of Group

centerline-center

¢ centerline-center{flush)
sideline 492 feet (150m) south
sideline 492 feet (150m) north
centerline 492 feet (150m) west
centerline 617 feet (188m) east

Microphone No.

L0 I L i




TABLE A.b
Definitions
4 brief synopsis of Appendix A data column headings is presented.
EV Event Number
SEL Sound Exposure Level, the total sound energy measured

within the period determined by the 10 dB down duration
of the A-welghted time history. Reference duration,

l=-second.
ALm A-welghted Sound Level(maximum)
SEL-ALm Duration Correction Factor
K{A) A-weighted duration constant where:

K(A) = (SEL-ALm) / (Log DUR(A))
Q Time History Shape Factor, where:

Q = (100.L(SEL-ALm) / (pUR(A))

EPNL Effective Perceived HNoise Level

PNLm Perceived Noise Level (maximum)

PNLTm Tone Corrected Perceived Noise Level({maximum)

K{E) Constant used to obtain the Duration Correction for

EPNL, where:

K(P) = (EPNL-PNLTm + 10) / (Log DUR(P))

OASPLm Overall Sound Pressure Level(maximum)

DURCA) The 10 dB down Duration Time for the A-weighted time
history

DUR(F) The 10 dB down Duration Time for the PNLT time history

TG Tene Correction calculated at PNLTm

Each set of data is headed by the site number, mierophone location and
test date, The target reference condtions are specified above each data
subset,
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APPENDIX B

Direct Read Acoustical Data and Duration

Factors for Flight Operations

In addition to the magnetic recording systems, four direct-read, Type-l
noise measurement systems were deployed at selected sites during flight

operations.

The data acquisition is described in Section 5.6.2.

These direct read systems collected single event data consisting of
maximum A-weighted sound level (AL), Sound Exposure Level (SEL),
integration time (T), and equivalent sound level (LEQ). The SEL and dBA,
as well as the integration time were put into a computer data file and
analyzed to determine two figures of merit related to the event duration
influence on the SEL energy dose metric. The data reduction is further
described in Section 6.2.2; the analysis of these data is discussed in

Section 9.4.

This appendix presents direct read data and contains the results of the
helicopter noise duration effect analysis for flight operations. The
direct read acoustical data for static operations is presented in

Appendix D,

Each table within this appendix provides the following information:

Run No.
SEL(dB)
AL(dR)

T(10-dB)

K(A)

Q

Average
N

Std Dev
9Q% C.I.

Mic Site

The test run number

Sound Exposure Level, expressed in decibels
A-Weighted Sound Level, expressed in decibels
Integration time

Propagation constant describing the change in dBA with
distance

Time history "shape factor"

The average of the column

Sample size

Standard Deviation

Minety percent confidence interval

The centerline mircophone site at which the measurements
were taken
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MIC SITE:

AL{DBY TCLD-DBY Kial

]

-.J"-J"'\J"--I-"d"'-l
n.nl'_l'll}-l:-'--ll.‘.'-‘:_‘-.l
e CALEO T3 e GO

74,40

0.4

.50

EEEEEEE

ZEEFETE

.03

04

EEEETEL




HELICOPTER: TWINSTAR

TEST DATE:

DPERATICN:

AL NI

B7
Bl
B
B10
Bi1
BiZ
B3

FERABGE
N
STl.ORY.

0% L.,

HELICOPTER: TWINSTAR

TEST DATE:

OPERAT I

R NI,

B?
B
B%
E1l
Bll
Bz
Bid

AYERAGE

N

ST0.0EV.

¥0% .1,

6-7-83

TABLE B.2.2

SO0 FT.LFO--TARBET 1A% 114 MPH

SEL£DG)
4.7
Ba.3
£4.8
4.7
24.4

g3
gi.8
89.70
F
0.91

0,37

4-7-83

MIE BITE:
ALLDEY Ti1D-DB) Kid)
77:4 12.5 4.8
7.4 15 6.7
i 12 Fal
6.7 15 8.8
74.8 £3 i
7.4 18 8,7
79.9 i3 7l
76,60 14.10 §.50
7 7 7
0,38 2.9 24
.43 1.54 B
TABLE B.2.3

300 FT.LFO--TERGET 1A5 116 MPH

SELTDE)

B3.8
8.1
B4.S
84,8
Ba.l
B4.2
3.2

B4.20

MI[ SITE:

AL{Dg; T{10-DE}

764
77l
26,7
fd.d
Td.4
19,2
714

74,40

7

1,88

L.ad

i
15.5
¥
17
id
18
14

18,40

i

Z432

=
=
I
—

PR S - S . S
P e S RS S T~

7.40

[R5
s

04

.03

Low]

-

P S S R SR



HELICOPTER: TWINSTAR

TEET DATE:

OPERATID:

RN NE.
L

Ci5

C1é

17

C18
AVERAGE

N

BT8.0EV,

¥O4 L.1.

HELICOPTER: TWINSTAR

TEST DATE:

OPERATION:

&-7-83

SEL(DBY

£3.4
Bd.¢
4.3
B4.7
Bd
84,30
3
d.44

.44

a-7-83

TABLE B.3.1

300 FT.LFO-—TARGET Az :0I.T MPH

MIC SITE:

ALLDRY T410-DE) kil

73.4 f A
76,3 M e
7.5 MA M
76.3 & WA
9.7 M NA
74.00
3
0.47
0.43
TABLE B.3.2

500 F7.LFO--TARBET IAS 101.5 MPH

HIC SITE:

RiW MO, GSEL{DEX AL{DE).T(I0-DE) Kid

t14
C15
Cle
Li7
Cig
AVERAGE
N
HIN LR

0% C.1.

83.3
B4.5
b4.2
B4.3
8d.2
Ba.td
5
.38

.34

73.8
7d.3
764
9.3
a2

7a8.00
K]
0.38

0.3¢é

13 4.5
14 7.2
14 4.8
13.3 7.4
13 7.2
14.30 7.00
3 3
0.57 o4
0.73 132

(= ]

EETL£EF

- T T &
e LR F. i o

-
2]

AL

04




HELICOPTER: TWINSTAR TABLE B.3.3
TEST DATE: 4-7-B3

OPERATION: 500 FT.LFO--TARGET IAS 10!.3 MPH

MIC SITE!

RUM NO. SEL{DR)  ALCDB) TC10-DE) Ripd

RE B3.5 4.4 ] 7.8

£13 84.5 74.] 18 gad

Lid B4.2 5.4 i 7.7

C17 84.3 7.8 15.5 il

Cid 84,2 73.8 i 1.3

AVERAGE B4.10  7HGD 15,30 7,30

N g ;] 3 3

STD.DEV. 0.38 0.57 L.édd 4

17 0.34 0,34 137 .38
HELICOPTER: TWINGTAR TABLE B.4.1]

TEST BaTE:

OPERATION:

RUN NO,

By
D29
bzl
D22
b3
D24
023

AVERAGE

N

STD.DEV.

i €.,

4-7-43

1006 FT,LFO--TARBET 185 130.5 MPH

SELCDE)

B2.6
8.2
5.8
Az.)

g

Bz
B2.2

82.10

7

0,41

0.3t

ALLDR)

e e Y
|

e [t Ml |

Padl Eall Fad A pa
T BT O TAS e

e |

7250

0.87

i.44

NI

T{10-0R)

EEEETETE

SiTE:

=
w—
pu £
et

EEETEETE

07

08

(b= |

EEEETESE




HELICOPTER: TWINGTAR TABLE B.4.2

TEST [ATE: &-7-83

OPERATION: 1000 F7.LFO--TARGET IAS 130.5 MPH

HIC 5ITE:

RUM NO. SELIDE)  ALLDBY TE10-DB) KEA)

nie 2.1 72:35 2 7.3

024 Bl.Y¥ 72.3 19,3 7.4

bl 2.1 723 24 il

022 BI.7 731 14 74l

b3 8l.4 72 2l 7.1

D Bl.d 123 17 7.4

D23 Bl.g 72 22 7.3

AVERAGE gr.80 72,40 20,0 7,30

b 7 7 7 7

5T0.0EV, 0.24 0.3 2,81 W1k

04 L., Bui¥ 0,28 Z.08 !
HELICOPTER: TWIMSTAR TABLE B.4.3

TEST DATE:

OPERATION:

RIN NI,

iy
Pl
Dl
[IEY:
023
h4
D23

#VERRGE
M
STOLDE,

#k L.,

§=7-83

1008 FT,LFO-~TARBET IAS 130.5 HFH

SEL(DBD

o TS SR ]
Ty Fail b=

[ e o o e |
— b R
- s Al
o L e e O £ 0

B2,00

1.47

1.3

MIC: SITE:

AL{DEY T10-0R} Bifd

721
73.2
138
2.7
7153
12.9
.7

L] 7.5
l4 7.4
2] &.8
20 4.7
4 74
185 4.8
24 7.3
2030 7.0
7 i
2.87 W37
L.l 27

LA A

S Sy Ve Sy




HELICOPTER: TWINSTAR
TEST DATE:

OPERATION:

RIN N,

£z4
E?7
Ez8
EZ%
E30
E3l
E32
Ed3

AVERAGE
H
§TD.DEV,

i Al

HELTCOFTER: TWIMETAR
TEST DATE:

OPERATION:

LT

E2d
£27
E28
£27
E30
Edl
E32
£33

AVERAGE
N
97D .BEV,

#04 C.1.

&-7-83

TABLE B.5.1

TAHEDFF-~TARGET 145 43 MPH (ICa0)

SEL(DE)

84.3
B&.2
B7.5

87
Ba.7
Bé.d
87.1
B7.3

B4.%0
8
0,50

0.33

4-7-83

AL(DE) T(10-DB)

7.4
76,3
79.3

78
78.3
78,3
8.7
75.4

EEFETEEE

78.20

8

1.02

0.28

MIC SITE:

LIGH

EEEEFTEEFEF

TABLE B.5.2

TAKEDFF--TARGET 145 43 MPH (ICAD)

SELCDB)

B4.8
B4.4
83.8
84,6
B83.7
24.3
B4.8
#.2

B4.80
g
.37

1.38

MIC SITE:

ALCDB) Ti19-DB) KAl
74.3 NA H
74.3 24 7.3
75.4 24 7.
4.8 i 7.4
f2.2 27 B.2
74.4 Vs F
74.% 24 7.2
4.8 24 7.8
74.40 24,00 7.50
g 7 7
0.74 .08 32
.64 .33 w24

i
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HELTCOPTER: TWINSTAR
TEST DATE!

OPERATION:

RUN NO.

£24
EZ/
B2t
B2
E3d
Eal
E32
Ed3

AVERAGE
i
5T0.0EY,

904 L1,

§-7-83

TABLE B.5.3

TAKEOFF--TARGET 1AS 43 MPH (ITAD]

SELCDB)

[Ek]
L3

3 CEw
L
i
O s Pl LA LN B0 T

8¢,
Ba.
83,
B3,
23,

(2]
Cad
et |

83,40

8

.42

b.20

ALLDET

724
72.8
3.7
72.2
T4
73.1
72.8
73.4

72,80
g
0,34

0.34

MIC SITE:
T410-DA) Kif)
32 7.3

L] 7ad
9.5 1.3
37 7.9
L] Fr
27 74
34 7.2

24 7.8
28,80 740
E ;]
273 .23
1.%4 13

=]

b e S e TR T T

o

04
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HELICOPTER: TWINSTAR
TEST DATE:

UPERATION:

RUN MO,

Faz
Fa3

Fd4
Fis

Fde
Fa7
Fab
~WERAGRE
N
5TD.DEV,

704 C.I.

HELICOPTER: TWINSTAR
TEST DATE:

OPERATION: APPROACH--TARGET 145 43 HPH (1CAD)

RN HO.

Faz
Fé3
Fdd
Fé5
Fdg
F47
F4B

AVERAGE
h
§T0.DEV.

#04 L.,

§-7-E3

APPROACH-~TARBET 183 43 MPH {1080

SELCEE)
P3.3
R2.7
23.9
92.7
73.7
§2.3
#3.7

93.20
7

0.d8

0,45

a-7-83

SEL{DR)

.
-

e - -
uﬁn;m‘-ﬂ-\qm\-@

e = e R B 4 ]
sl it B

¥3.80
7
2.33

17

TAELE B.6.|

ALLDB) T{10-D8)

Ba.4
B5.8
87,8
Ba.d
B7.3
B3.8
7.9

Bé .50

-
i

0.8

0.0

MIC SITE:

-,
-

]
]

EELEEEET
EEEETEF

TABLE B.6.2

HIL BITE:

AL{DBY T{10-0B) Kid)

o = By
- ﬁ- -
=2 he <02 2

= EoF

on

3.7%

d.é1

12 2.0
13 ?l:
1.3 &.8
1z 2.5
i1 A
i1 4.4
7 =
11,20 a1
7 i
1,3 2,03
0.78 R
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CEFELTES
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et S S TR

=
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HELICOPTER: TWINSTAR
TEST DATE:

OPERATION:

RN NI,

Fa2
F43
Fd4
Fa3
F45
F47
F48

AVERAGE
N
ST0.DEV,

1P

HELICOPTER: TWIMSTAR
TEST DATE:

OPERATIEN:

RLN NI,
38
G3?
40
B4l

ENERAGE

5TD.DEV,

04 Cais

6-7-83

APPROACH--TARGET 1a5 43 MPH (1CAD)

SELCDB)
B2.4
BZ.%
Bl.l
B4.1
85.4
85,7
84,1

B3.71
7
Li47

123

4-7-83

TAKEOFF--TARGET I1AS 63 MPH STANDARD

SELIDE
BE.1
87.4
B84
B7.7

8,00
|
.32

B.al

TABLE B.6.3

MIC 517E:

ALCDBY TeL0-DB) Hial

B4.2
g2.7
Bl.1
a4l
5.3
gs.f
Bd.1

B3.50

i3 =13
14 i
18 i
14 i
12 0
o b
13 0
lgr:'rﬂ _EIqEB
7 7
.63 w8l
1.%3 43
TABLE B.7.!

MIG SITE:

AL(DB} T{10-BBY Hig)

an.2
ED
Bl.1
75,4
80,30
g
0.57

0,48

]
&
]
A

EEEE

=

P Ay e S,

HA
i
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HELICOPTER: TWINSTAR TABLE B.7.2
TEST DATE: 4-7-R3
DPERATION: TAKEQFF--TARGET 1AS &3 MPH STANDARD
MIC S1TE: !
RUN MO, SEL{DBY  ALIDB) T¢10-DB) HiA) o
638 84.4 P 21 7 4
3% B3.3 76.3 7 7.3 ]
G40 84.2 77.8 L4 7 4
41 B34 74,2 21 7. 4
AVERAGE B3.50 74,70 18,80 .10 oA
N i E 4 4 4
5700, 0.5 0.73 2,43 13 A3
1 P 0.4l 1,58 3,07 7 03
HELICOPTER: TWINSTAR TABLE B.7.3
TEST DATE: &-7-83
OPERATION: TAKEOFF--TARSET 1AS 43 MPH STANDARD
MIC SITE: 4
RUM NO. SEL¢DBY AL(DBY T{(LD-DB) Hial t
438 B3.9 74,4 1%.5 7.2 4
537 B5.2 5.7 i? 7.4 3
ol 83,8 Té.d 16 8,1 o
gl 83.3 73 24 7.3 3
HJERAGE B5.40 73,70 17,40 7.30 Pl
N L] 4 4 4 4
STO.OEY. .35 .48 3.3 it ]
0% C.l. 7.41 0.8l 3.38 A3 g



HELICOPTER: TWINSTAR
TEST DATE:

OPERATION:

RLN NI,

Had4

H33

H3a

H37
AVERAGE

N

ST0.DEV.

so4 L.l

HELICOPTER: TWINSTAR
TEST DATE:

OPERATIN:

RN NG,

HI4

H33

H3s

H37
AJERAGE

H

5TD.DEV,

O C.l.

4-7-83

APPROAH--TARBET IAS 43 HMPH STANDARD

SELDAI
87.2
72.3
f0.2
1.8

70,40
4
.30

2.7t

¢-7-83

APPROAH--TARGET [AS &3 HPH STANDARD

SEL (DRI
¥0.8
9.4
'i'[;.l

70,10
3

.70

1.18

TABLE B.8.1

HIC BITE:

ALCDR) T410-DBY

Bl.1
85.%

8l
B3.4

83.20

2.10

2,45

TABLE B.B.Z

FEEE

KiA)

FEFTE

MIC-BITE:

ALIDRY TI10-T8)

1,57

2,43

17
1d.q
i

i3
13.40
4
4.9

.40

Hia

(=]

EEEE




HELICOPTER: TINSTAR  TABLE B.8.3
TEST DATE: 4-7-83
OPERATION: APPROAH--TARBET 145 43 MPH STANDARD

IC SITE:

jr

RN NO. SEL(DB) AL(DE) TUI0-08 Kl i1
H34 9L B4 i it 4
s W2 WS 22 T2 4
H3  BR.§  B.6 22 "hE 4
W7 W2 88 13 7.1 5
AVERAGE 9050  EZ.00  1R.30 6.ED e
N 4 4 4 g &
5T ﬂaﬂE‘J ' T 78 1133 -Eai-“t "'t'_}" !ﬂf,i_._-

L LEE 205 593 57 Jié




HELICOPTER:
TEST DETE:

OPERAT 10N

TWINETAR

4-7-83

N HO, SELITR)

M4Y
oL
#51
M2
W33
SWERAGE
H

ETE. DRV,

90 €.,

AELICOPTER:
TEST DATE:

DFERATLINY

TABLE B.%.1

500 FTLLRO--TARGET 1A% 145 MPH
Vi SiE:
alilgl Told-0R) LAd
= 7 e Ha
B&. £ 0.5 e M
Elm-t ‘1:51._; S s
Ba.l 79 A S
R4S TR NA i
fa.50 79530
5 5
.35 T,78
g,25 g8
TWINSTAR TABLE B.9.2
a-7-g3
SO0 FT.LFO--TARGET iA5 145 MPH

RIM NO. -SELLD3)

Ha4F
M54
Hat
H32
H53
F/ERABE
H
ETD,DEV,

90% €.1.

B2
B4
Ba.3
g5.8
Ba.2
84,10
5
1,73

B.22

MIL SITE:

SLADRY Til0-D@

3
i

= E R == 0 = 7]

d

= e

i
8

Fed
7.4
79.20

Ei

0.74

0.7

12,3

ix

i

=

5

iZ

.20

43

A
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i

FTEF LT
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HELICOPTER: TWINGTAR

TEST DATE:

OPERATION:

RUN ND.
Hdg

I

Mil

MaZ

Ha3
AJERAGE

H

570,08V,

M C.1,

HELLCOPTER:
TEST DATE!

OPERATION:

RN NO,

N3d

N33

N34

AVERABE
M

§T0.DEV,

204 C.1.

TABLE B.9.3
e-7-82
300 FT.LFO--TARGET 1AS5 145 HPH
HIC SITE:
SELLDB)  AL{DB) T{10-DB} Rig)
Ba.4 7%.8 10 g.B
24.3 a0 ? 6.4
Bs.¥ 72,3 i3 4.8
§3.8 8.7 i1 8.8
84 8.2 id d.8
.30 79 11.40 4.8l
3 3 3 b
1,44 1.73 2,07 08
0,42 B.72 1,98 A%
TWINSTAR  TABLE B.10.1
§-7-83
730 FT,LFO--TARGET 145 130.5 NPH
HIC SITE:
SELLDE}  ALCDB) Ti10-08) fia)
g4.9 73 F A
ga.¥ 74 A NA
g5 M7 W M
gd.40 73,20
3 3
.30 0.8
[.85 L.45

T otn B onowh

(]

02



HELICOPTER: TWINSTAR

TEST DATE

DFERATION

RN NO,
N5
W33
N3&
AVERAGE
N

S5T0.0EY,

o .1,

HELICOPTER: TWINSTAR TABLE B.10.2

TEST TATE: -4-7-B2

UPERATION: 750 FT.LFO--TARGET IAS 130.3 HPH

MiC SITE:

RIW MO, SEL{DB)  ALYDB) Tii0-DB} Kif)
H34 8.7 74,8 & 7.3

N35 4.1 fd.3 Nf! t

N34 Bd.2 4.7 2] To2
AVERAGE B 75 200 7.30
N 3 3 i 2
oTD.DEV, 0.32 0.7 0.10 2]
§04 L.1. i.54 1.3 0.00 4

TABLE B.10.3

R

i 730 FT.LFO--TARGET 1A5 130.5-MPH
HIT SITE: l
SELCOBY . ALVDEY TID-DEY LR g
Bl.& 4.4 1% 7.2 o4
a4l 5.7 17 8.7 4
241 4.7 20 7.2 .4
B3.F0 7500 1B.70 7.0 4
3 3 3 3 3
0.29 0.79 §.53 32 kS
i,49 1.4 .38 53 03

% ]

04

Jdé




APPENDIX C
Magnetic Recording Acoustical Data for Static Operations

This appendix contains time averaged, A-weighted sound level data along
with time averaged, one-third octave sound pressure level information for
eight different directivity emission angles. These data were acguired
June 6 using the TSC magnetic recording system discussed in Section
5.6.1.

Thirty-two seconds of corrected raw spectral data (64 contiguous 1/2
second data records) have been energy averaged to produce the data
tabulated in this appendix. The spectral data presented are "As Measured”
for the given emission angles established relative to each microphome
location. Also included in the tables are the 360 degree (eight emission
angle) average levels, calculated by both arithmetic and energy averaging.
The data reduction is further deseribed in Section 6.1. Figure 6.1
(previously shown) provides the reader with a quick reference to the
emission angle convention,

The data contained in these tables have been used in analyses presented in
Sections 9.2 and 9.7. The reader may cross reference the magnetic
recording data of this appendix with direct read static data presented in
Appendix D.



Appendix C

"As Measured" 1/3 Octave Noise Data--Static Test are presented.

The key to the table numbering system is as follows:

Table No.

Appendix No.

Helicopter No. & Mierophone Loeation

Page No. of Group

1-1H.

S —

Table No.

'-:lmmdrﬁ-‘lbﬂl—"
P4 14 4 4 4 4

-

I

Qoanonn
P4 ba B4 b b bd b

Microphone No.

Page No.

Aerospatiale
Aerospatiale
Aerospatiale
Sikorsky

Bell

Hughes
Boeing Vertol

SA-365N (Dauphin)
SA-355F (Twinstar)
AS-350D (Astar)
S-76 (Spirit)

222

500D

CH-470D (Shinock)

1H (soft) 150 m northwest

2 (soft) 150 m west

4H (soft) 300 m west

5H (hard) 150 m north

1 Hover-in-Ground-Effeect

2 Flight Idle

3 Ground Idle

4 Hover-Out-of-Ground-Effect
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APPENDIX D

Direct Read Acoustical Data for Static Operations

This appendix contains time averaged, A-weighted sound level data (Leq
values) obtalned using direct read Precision Integrating Sound Level
meters, Data are presented for microphone locations 5H, 2, and 4 (see
Flgure 3,3).

4 description of the measurement systems is provided in Section 5.6.2, and
a figure of the typical PISIM system is shown in Figure 5.4. Data are
shown in Table D-1, depicting the equivalent sound levels for eight
different source emission angles. In each case the angle is indexed to
the specific measurement site. A fipure showing the emission angle
convention is included in the text (Figure 6.1). In each case, the Leg
{or time averaged AL) represents an average over a sample peried of
approximately &0 seconds.

Quantities appearing in this appendix include:

HIGE Hover—-in—-ground-effect, skid height 5 feet above
ground level

HOGE Hover-put-opf-ground—effect, skid height 30 feet
above ground level

Flight Idle Skids on ground

Ground Idle Skids on ground




TABLE D.1.1
STATIC DRERATIONS
DIRECT READ DATA
{ALL WALUES A-WEIGHTED LEQ, EXPRESSED iN DECIBLES)
TWINSTAR
4-7-83

SITE 4H (S0FT SITED

HIGE FLT.IDLE GAN, IOLE HOBE

I-0 38,40 J=08 55,30 J-08 44,40 k-1 4,70
1-31% 40,40 J-315 37.80 J-3158 N k=313 45,51
1-270 &43.40 J-270A 61,50 J-2708 48,70 H=270 83.40
I-225 44,10 J-2254 40,80 J-223b M4 K-225 &9.40
1-180 83.40 J-180A a7, J-1808 4%.40 K-18d 74,40
1-135 40,80 J-1354 42,70 J-1358 M K-135% 73,40
I-%1 38.90 J-704 5910 J-70B 49,40 K-90 47,30
1-45 41,80 J-4% 39.20 J-438 ) K-45 44,70

SITE 2 (SOFT SITE)

HIGE FLT.IBLE GD. IOLE HOGE

I-0 47,50 J-CA 45.40 J-08 54,350 k-0 72.90
1-313 0.7 J-3E 67,80 J-3158 Y H-315 73,30
1-270 73.80 J=270A 72:10 J=2708 58,50 K-270 75.50
1-225 73.20 J-2254 72,40 J-2254 N K=228 7%.70
1-180 76.20 d=1804 69,00 J-1808 ) K-180 ga.50
[-133 73.00 J-1354 73.40 J=1358 HA K=133 Ba, 20
1-%0 70.70 J-704 49.70 J-908 38,90 K-50 79,70

[-43 72,40 J-E3A HA J-438

L3

K-45 7.0




TWINGTAR

§-7-83

SITE SH (HARD SITE)

HIGE

I-30
[-43
1-0
1-315
1-21
1-225
1-180
I-135

SITE 7H (H&RD SITE)

HIGE

72,60
76,40
74.00
1730
gi.4a0
B4, 70
B5.31
79,90

47,23
7.2
49.89
7311
78,48
80.42
I9E7

73,98

TABLE D.1.2

STATIC CPERATIONS
DIRECT READ DATA
(ALL VALUES A-WEIGHTED LE@, EXPRESSED IN DECIBLES)

FLT.IDLE GRMLIDLE HOGE
J-FlA 75,40 J-70B 43,40 K=-90
J=454 72,00 J-458 A K-45
J-0A 70.30 J-08 45.90 K-0
J-3154 78,50 J-3138 M K-3i5
J=2708 g3.00 J-2708 &d, 40 k=271
J-22% 7880 J-2258 g2 K-225
J-1804 74,50 J-1308 a2.00 K-180
J-135 77.40 J-133E A k=135
FLT.IBLE DL IBEE HOGE
J-70A 49,83 J-%08 58,44 =30
=454 68,02 J-438 h K-a§
4-0A 6338 J-08 35,49 K-0
J=315 71.48 J-3158 ] H=315
J-2704 713 J-2708 57.ad K-270
J-22%4 FRSL J-Z258 MA K-225
J-18CA &7, 73 J-1308 30,85 K-180

=123 71413 J=1358 L H-135

78.30
79.40
7.2
74.00
7.7
Bd. 10
B81.%0

75305
701

48,67
22043
75.33
B3 14
78,84
76,3




APPENDIX E
Cockpit Instrument Photo Data

During each event of the June 1983 Helicopter Noise Measurement program
cockpit photos were taken. The slides were projected onto a screen
(considerably enlarged) making it pessible to read the instruments with
reasonable accuracy., The photos were supposed to be taken when the
aireraft was directly over the centerline-center microphone site.

Although this was not achieved in each case the cockpit photos reflect the
helicopter “stabilized" confipuration during the test event. Ome
important cautlon is necessary in interpreting the photographie
information; the snapshot freezes instrument readings at one moment of
time whereas most readings are constantly changing by a small amount as
the pilot "hunts" for the reference condition. Thus fluctuations above or
below reference conditions are to be anticipated. The instrument readings
are most useful in terms of verifying the region of operation for
different parameters. The data acquisition is discussed in Section 5.3

Each table within this appendiz provides the following information:

Event HNo. This event number along with the test date provides
a cross reference to other data.

Event Type This specifies the event.

Time of Photo The time of the range control synchronized clock
consistent with acoustical and tracking time
bases.

Heading The compass magnetic heading which fluctuates

around the target heading.

Altimerer Specifies the barometric altimeter reading, one of
the more stable indicators.

148 Indicated airspeed, a fairly stable indicator.

Hotor Speed Main Rotor speed in RPM or percent, a very stable
indiecator.

Torque The torque on the main rotor shaft, a fairly stable

value,
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APPENDIX F
Photo-Altitude and Flight Path Trajectory Data

This appendix contains the results of the photo—altitude and flight path
trajectory analysis.

The helicopter altitude over a given microphone was determined by a
photographie technique which involves photographing an alreraft during a
Elyover event and proportionally scaling the resulting Image with the
known dimenszions of the aireraft. The data acquisition is described in
detail in Secticn 5.2. The detalled data reduction procedures is set out
in Section 6.2.1; the analysis of these data is discussed In Section 8,2

Each table within this appendix provideg the following information:

Event No,. the test run number
Est. AlE. estimated altitude above microphone site
p=-alt, altitude above photo site, determined by

photographic technique

Est. CPA estimated closest point of approach te microphone
site
Est. ANG Helicopter elevation with respect to the ground as

viewed from a sideline site as the helicopter
passes through a plane perpendicular to the flight
track and coincident with the observer location.

ANG 5-1 flight path slope, expressed in degrees, between
P-Alt site 5 and P-Alt site 1,

ANG 1-4 flight path slope, expressed in degrees, between
P-Alt Site 1| and P-Alt Site 4.

ANG 5-4 flight path slope, expressed in degrees, between
P-Alt Site 5 and P-Alt Site 4.

Reg C/D Angle flight path slope, expressed in degress, of
regression line through P-Alt data points.




TABLE F.}
HELICOFTER: TWINSTAR

TEST DATE: 4-7-B3

OPERATION: 500 FT.FLYOVER/TARGET 14S=130.5 MPH

CENTERLINE

HIC &3 HIC #1 HIC #4

EST. EST, EST.
EVENT N0 ALT. P-ALT. ALT. P-ALT. ALT.

Al 5328 §37.2 §11.2  B1S.4 48R4
A2 472.3 4749 409.5 442,01  444.7
A3 4B4.1 4B3.7 4473 4827 492.3
L} 473 472 478.8 N4 482.4
AJ  Si4.1 G124 510.3 5218  505.4
fid 500 50,2 479 447.1 442.2

AVERAGE  474,7 478.4 4B4.4  489.9 473.1
5DV M3 257 7 35 Rd

TABLE F.2
HELICOFTER: TWINSTAR
TEST DATE: &-7-B3

OPERATION: SO0 FT.FLYOMER/TARGET 1AS=114 HPH

CENTERLINE

P-ALT,

M
HA
448.35
481 .4
00,7
474.1

474.2
244.5

HIC &35 MIC 81 HIC &4

EST. EST. EST.
EVENT N0 ALT. P-ALT. ALT. P-ALT. ALT.

B? 922 523.% G04.B 50%.6 4Rl
B8 479.7 4B0.7 d479.7 477.4  4B0.1
Ef 522.3 522.8 S19.8 G520.3 5173
Bl0 S0Z.% 504.7 497.8 4965 4937
Bll  S11.% SI5.8 303.7 4593 4972
B1Z §21.2 §19.3 530.6 529.8  536.1
Bl3 937 904,534 TH4® DB2.A

AVERAGE 3l

4.7 Si0.7 913 912.8 i
510, DRV 234

2.8 M.3 58 2.7

P-ALT.

472.8
481.4

A
495.7
301.7
336.,2
a5l.7

3.9
194.4

SIDELINE
HIC &2 HIC &3
EST., ELEVN  EST. ELEY
CPA ANE CPA ANG
09,5 44,1 708.1 HA
673.2 43 4724 ha
678.6  43.5 480.2  43.4
ABd.6 44,2 686 N
708.8 44 707.4 44
686,46 44.2 4BB.5 4.1
490.6  44.5 490.8  22.3
15.3 1.3 15 24.4
SIDELINE
HIC &2 HIC &3

EST. ELEV  EST. ELRV
CPA ANG CPA i
4.7 45.7 WS 45T
487.3 44,3 487.3 443
715.7 46,6 7155 W4
49%.7  45.3 W04 453
704.1 457 4.9 4D.é
7234 4.2 TRy AL
741.3 4.4 7415 4B.4
711 462 7113 PG
1.4 1.3 174 175

AB

wh ELEE
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g
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TABLE F.3
HELICOPTER: TWINSTAR

TEST DATE: 4-7-B3

OPERATION: 500 FT.FLYOVER/TARBET 1AS=110.3 HPH

CENTERLINE

MIC B3 MIC #1 MIC #4

EST. EST. EET.
EVENT NO  ALT. P-ALT. ALT. P-ALT. ALT.

Cl4 9524.2 526.3 526.2 3S20.3 520.7
€15 454,08 458,01 454.7 454.7 4547
Clé 477.2, 475.8 484.1 Ny 4713
C17 4592 472 442.7 499.7 457.4
Clg 484.9 4B1.7 94BB.2 493.6 450.B

AVERABE  482.4 4B82.B 484 4B1.B 484,89
STD. DEV 25,5 23.8 P74 3l B9

TABLE F.4
HELICOPTER: TWINSTAR
TEST DATE: 4-7-B3

OPERATION: 1000 FT.FLYDVER/TARGET IAS=130.%5 MPH

CENTERLIKE

P-ALT,

530.5
458.9
489.9
440.%

487

483,43
4.1

HIC &5 MIC #1 HIC #4

EST, EST. EST.
BJENT ND  ALT. P-ALT.  ALT, P-ALT.  ALT.

by f12.0 4.3 907.8 ¥05 P04,
D20 943.4 9434 9353 Rab  748.4
b1 971.2 ¥7l.0 9§26, 9455 B91.]
D22 §34.1 7364 Fi%.6 M 7l
D23 974.2 9755 1.2 Y. 7i2A
D24 991.7 1007.3 754 9342 P24
023 978 983.B  §47.B 7l ¥59.4

AVERABE  940.7 7849 7434 446 9301
5TD. DEV 27.8 3.2 254 238 3D.é

P-ALT.

704.7
#40.1
B8Y.é
§13.4

¥4
944.3
Féd.o

34.7
.8

SIDELINE

HIC &2 HIC &3
EST. ELV  EST. ELRV
CPA FNG CRA ]
720.4 44 720.2 449
71,3 42,9 &3 4.9
4%1.6  44.7  670.8 A
6754  43.2 76, 4d.2

893.1 44,8 4728 44,
690.4 44,5 47,2  35.4
19.4 8 A 5 O

SIDELINE

MIC 2 MIC #3
EST.  ELEM  EST, ELEY
EPA AN CPA ANE
1032.4 4815 1032.% 4l
10745 42.7 10755 627
£04%.1 42 1094,2  41.%
1043 61,9 104d.6 ]
1090.5  43.2 1090.6  43.2
1073.4 827 W77 827
1085.6  43.1 10BS.B a3
104d4.1 42,4 1048 53,4
22,5 S 232 B
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HELICOFTER:

TEST DATE:

OPERATION:

EVENT NO

E2d
E27
E28
E29
E30
Eil
E32
Eig

AVERAGE
STD. DEV

HELICOFTER:
TEST DATE:

OPERATIDN:

EVENT NO

Fa2
F43
Fad
F45
Fdé
F47
F48

AVERABE
§T0. DEV

TABLE F.3
THINSTAR

&-7-63

ICAD TAKEOFF/TARGET 148=43 MPH

CENTERLINE

HIC #3 HIC &1 HIC &4

EST. EST. EST.
ALT. P-ALT.  ALT. P-ALT.  ALT,

402.7 347.4 5924 57l.é 7437
427,53 394.5 414.3 3F1 7449
I 336,y SEI.4 547 751
402.7 349 415.2 S79.2 7847
398.7 354.2 401§ 595.1 764
q07.8 3718 590.% 5754 734.2
16,1 377.4 619.7 59%.2 782
384.4 3387 5.2 587 741.3

q02.2 343.8 602 5H3.3 742
6 1%4 134 113 17.2

TABLE F.g8

TWINSTAR

&-7-83

P-ALT.

707.4
733.4
708.4
79,1
716,39
&78.0
42,1
712.4

721.2
ig.7

10AD & DEGREE APPROACH/TARGET 1AS=43 HPH

CENTERLINE

HIL #5 HIC &1 HIC #4

EST, EST. EST.
ALT. P-ALT.  ALT. P-ALT.  ALT.

02,3 2B%.8 3771 4GB 4387
299.9 7.4 3631 37 417.1
288.3 274.5 340.1 348.%  417.3
281.4 267 344 3434 3937
300.3 28B.4 3542 3532 400.B
300.1 285.6 34s.F 3843 420.2
293.3 0.2 d96 3523 404

d40.8 355.3  413.1

295.1 282,
g 10.4 g2 4.2

2
7.8 2

P-ALT.

424.1
404.1
40%5.4
378.4
386.4
404.8
392.1

3974
14.8

HIC
EST.
CPA

770.1
788.6
764.7
787.8
f77.4
748.4
791.3
74

7.5
10,4

HIC
EST.
CrA

al%.7
812.7
a0%.7
00,3
d07.4
613.7
§07.3

610.1
f.2

S1DELINE
#2 HIC #3
ELEY  EST.. ELRW
ANG CPa AR
0.3 Til.é al
3.4 767.9 32
S0 7445 50,7
3l Yed.d 2.
1| i R |
al.2 730.8  50.B
31,4 o 2.2
0.4 730.7 5.4
S0.8 V579 Gl
S I 5 o
SIDELINE
B2 HIC &3
ELEV  EST.  ELEV
ANG CPA ANG
370 eldd 379
3b.4 407.8 3.9
6.2 6043  3b.é
9 0%5.8 354
5.2 603.3 3.2
3.7 4087 3Td
B}y s02.8 36,2
3.3 605.2 36.6
8 9.7 .8

AG

22,3
21.8
20.2
23.1
26,1
22,5
24.2
26,8

ANG

(R I = = - = == &
aom o = m = o=
odn = L OO JFu L O

AN
1-4

13.4
14.1
15.%
17.3
13.%

14
16.2
14.3

17.1

19
0.7
21.2
20.2
18.4
20,3
20.8

AN

B D 00 D o O
Ll S0 oo LA o' O ol

REG.
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TABLE F.7
HELICOFTER: TWINSTAR

TEST DATE: é-7-83

OPERATION: STANDARD TAKEOFF/TARGET I1AS=43 MPH

CENTERLINE

HiC 85 HIC #1 HIC #4

EST. EST. EST.

EVENTNO  ALT. P-ALT. ALT. P-ALT. ALT. P-ALT.

G38  360.2 384.98 427 381.1 480.2
Ga¢  383.7 30,72 450.3 444.4 5034
G40 331.2 325.6 428.3 3F.6 5057
G4]  34d.1  352.8 4777 443.3 Q4B

AJERARE  359.8  353.5 445.%7 414,46 514.5
gTh, DEV 2.7 2.1 .9 ¥ s

TABLE F.8
HELICOPTER: TWINSTAR
TEST DATE: é-7-B3

OPERATION: APPROACH/TARGET IAS=63 MPH

EENTERLINE

488.°7
489.9
a02.7
J39.1

ain.2
33.2

HIC #3 HIC #1 MIC #4

EST. EST. EST.
EVENT NO  ALT. P-ALT. ALT. P-ALT. ALT.

H3d 300.9 284.1 39é.6 3704 473
H3S 303.4 283.1 408.1 378.3 4%1.4
H34 304.5 289.1 3921 3BS.1 44D
H37 3014 281.6 397.5 3.4 4.2

AVERAGE a3 285 378.6 388.7 474.8
STD. DEV 2.5 3.4 4.8 Bl 124

P-ALT .

458.4
470.3
442.1
433.4

4356.1
11.8

SIDELINE
HIC #2 HIC §3
EST.  ELEV  EST. ELRV
CPA ANG CFA ANG
651.4 41 445.% 413
487  42.0 441.2 42.8
52,3 41 4442 41,5
485.% 44.2 &75.8 447
484.2 42,2 4068  d42.4
14.2 1.5 1.8 1.4
STDELINE
HIC ¥2 MIC 3

EST. BBV EBTL.  ELBV
CrA A6 CPA ANG
432 38,7 4243 WA
£39.2. 397 430,7 40.2
429.1 3.6 4224 a3
432.5 3B.F7 4249 3R A
433.2 39 4258 393
4.3 P} 3.6 Fii

LTt = =
S -
B e BN w0

FNG
1

.7
13,2
1.2
12,6

A
1=

12.

b
4

q

3.3

12.

H

fa.2

bt - N R
3 LR Bl

NG
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REG.
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TABLE F.7
HELICOPTER: TWINSTAR

TEST DATE: 4-7-83

OPERATION: 500 FT.FLYOVER/TARGET 1AS=145 MPH

CENTERLINE
HIC 85 HIC #1 NIC #4
EST. EST. EST.
EVENT N0 ALT. P-ALT.  ALT. P-ALT.  ALT. P-ALT.
M4% 490.8 498.2 483.7 470.7 478.1 487
M3l 513.5 Mo 474,7 4B2.7 447.4 433.4
Hal 478 4B2.7 44,7 443.9 472 4.7
M52 495.9 493 G00.2  4%9.3  504.5 H
N33 4% 4797 490,3 482.7 499.3 500.7
AVERAGE 471.4 488.% 483.1 480.3 480.3 479.7
510, DBV 14.5 ¥4 d04 128 229 252
TABLE F.10
HELICOPTER: TWINSTAR
TEST DATE: 4-7-83
OPERATION: 500 FT.FLYONER/TARGET 1AS=130.5 MPH
CENTERLINE
HIC #5 MIC B1 HIC #4
EST. EST. EST.
EVENTNO  ALT. P-ALT. ALT. P-ALT. ALT. P-ALT.
N34 477.2 47B.3 4BB.¢ 480 497.8 4997
N35 471,01 4702 473.7 4748  480.3 A
Nad 301.B S10.2 495.5 480 490.5 50D,V
AVERAGE 483.4 484.2 4B4.4 478.3 48P0 S00.2
§T0. DEV 14,3 1) 10 3 5.8 288.8

SIDELINE
HIC g2 HIC #3
EST, ELEV  EST.  ELRY
CPA #NG CPaA ANG
690 44,5 4F0.6 445
4831 44,1 4R3.2 M
483.4 44  4B3.7 44
1.4 45,5 701.7 H
6748  44.%  &F3.4 43
671 d4.4  a90.a 247
7.3 o L7 A4
SIDELINE
HIC #2 NIC k3
EST, ELEV 5T, ELEW
CPA ANG CPa G
673.4 4.8 2.4 4.9
484.4 44  484.7 W
678.3 45.2 4%B.F  45.2
672 44,7 492 al
7.1 ob .l 26
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AFPENDIX G

NWS Upper Air Meteorological Data

This appendix presents a summary of meteorological data gleaned from
National Weather Service radipsonde (rawinsonde) weather balloon
ascensions conducted at Sterling, VA. The data eollection is further
described in Section 5.4. Tables are identified by launch date and launch
time. Within each table the following data are provided:

Time

Surface Helght
Height
Pressure
Temperature

Belative
Humidity

Wind Direction

Wind Speed

expressed first in Eastern Standard, then in
Eastern Daylight Time

height of launch point with respect to sea level
height above ground level, expressed in feet
expressed in millibars

expressed in degrees centigrade

expressed as a percent

the direction from which the wind is blowing
{in degrees)

expressed in knots
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APPENDIX H
NWS — TAD Surface Meteorological Data
This appendix presents a summary of meteoroclogical data gleaned from
measurements conducted by the National Weather Service Station at Dulles.
Readings were noted evey 15 minutes during the test. The data acquisition
is desecribed in Section 5.5.

Within each table the following data are provided:

Time(EDT) time the measurement was taken, expressed in
Eastern Daylight Time

Barometric expressed in inches of mercury
pressure
Temperature expressed in degrees Fahrenheit and centigrade
Humidity relative, expressed as a percent
Wind Speed expressed in knots

Wind Direction direction from which the wind is moving
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APPERDTY I

Un-5ite Meteorological Dara

This appendix presents a summary of meteorological data collected on-site
by TSC personnel using a climatronics model EWS weather system. The
anemometer and temperature sensor were located 5 feet above ground level
at noise site 4. The data collection is further described in Section 5.5.

Within each table, the following data are provided:

Time(EDT)
Temperature
Humiditcy
Windspeed

Wind Direction

Remarks

expressed in Eastern Daylight Time

expressed in degrees Fahrenheit and centigrade
expressed as a percent

axpressed in knots

direction from which the wind 1s blowing

observations concerning cloud cover and visibility
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